Suppr超能文献

高分辨率 CT 用于识别涂片阳性、活动性肺结核患者。

High-resolution CT for identify patients with smear-positive, active pulmonary tuberculosis.

机构信息

Pingtung Christian Hospital, Taiwan.

出版信息

Eur J Radiol. 2012 Jan;81(1):195-201. doi: 10.1016/j.ejrad.2010.09.040. Epub 2010 Oct 27.

Abstract

PURPOSE

This study evaluates the use of high-resolution computed tomography (HRCT) to differentiate smear-positive, active pulmonary tuberculosis (PTB) from other pulmonary infections in the emergency room (ER) setting.

METHODS

One hundred and eighty-three patients diagnosed with pulmonary infections in an ER were divided into an acid fast bacillus (AFB) smear-positive, active PTB group (G1=84) and a non-AFB smear-positive, pulmonary infection group (G2=99). HRCT images from a 64-Multidetector CT were analyzed, retrospectively, for the morphology, number, and segmental distribution of pulmonary lesions.

RESULTS

Utilizing multivariate analysis, five variables were found to be independent risk factors predictive of G1: (1) consolidation involving the apex segment of right upper lobe, posterior segment of the right upper lobe, or apico-posterior segment of the left upper lobe; (2) consolidation involving the superior segment of the right or left lower lobe; (3) presence of a cavitary lesion; (4) presence of clusters of nodules; (5) absence of centrilobular nodules. A G1 prediction score was generated based on these 5 criteria to help differentiate G1 from G2. The area under the receiver operating characteristic (ROC) curve was 0.96 ± 0.012 in our prediction model. With an ideal cut-off point score of 3, the specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV) are 90.9%, 96.4%, 90.0% and 96.8%, respectively.

CONCLUSION

The use of this AFB smear-positive, active PTB prediction model based on 5 key HRCT findings may help ER physicians determine whether or not isolation is required while awaiting serial sputum smear results in high risk patients.

摘要

目的

本研究评估高分辨率计算机断层扫描(HRCT)在急诊室(ER)环境中区分涂阳、活动性肺结核(PTB)与其他肺部感染的作用。

方法

将 183 例在 ER 诊断为肺部感染的患者分为抗酸杆菌(AFB)涂片阳性、活动性肺结核组(G1=84)和非 AFB 涂片阳性、肺部感染组(G2=99)。回顾性分析 64 层多排 CT 的 HRCT 图像,分析肺部病变的形态、数量和节段分布。

结果

利用多变量分析,发现 5 个变量是预测 G1 的独立危险因素:(1)累及右上肺尖段、后段或左上肺尖后段的实变;(2)累及右或左肺下叶上叶的实变;(3)有空洞病变;(4)存在结节簇;(5)无小叶中心结节。根据这 5 个标准生成了一个 G1 预测评分,以帮助区分 G1 和 G2。我们的预测模型的受试者工作特征(ROC)曲线下面积为 0.96±0.012。在理想的截断点评分 3 时,特异性、敏感性、阳性预测值(PPV)和阴性预测值(NPV)分别为 90.9%、96.4%、90.0%和 96.8%。

结论

使用这种基于 5 项关键 HRCT 发现的 AFB 涂片阳性、活动性肺结核预测模型,可能有助于 ER 医生在等待连续痰涂片结果时,确定高危患者是否需要隔离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/add5/7127118/44e3a95fbde5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验