Wells Gordon, Glasgow Joel N, Nargan Kievershen, Lumamba Kapongo, Madansein Rajhmun, Maharaj Kameel, Hunter Robert L, Naidoo Threnesan, Coetzer Llelani, le Roux Stephan, du Plessis Anton, Steyn Adrie J C
Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.
Department of Microbiology and.
Am J Respir Crit Care Med. 2021 Sep 1;204(5):583-595. doi: 10.1164/rccm.202101-0032OC.
Our current understanding of tuberculosis (TB) pathophysiology is limited by a reliance on animal models, the paucity of human TB lung tissue, and traditional histopathological analysis, a destructive two-dimensional approach that provides limited spatial insight. Determining the three-dimensional (3D) structure of the necrotic granuloma, a characteristic feature of TB, will more accurately inform preventive TB strategies. To ascertain the 3D shape of the human tuberculous granuloma and its spatial relationship with airways and vasculature within large lung tissues. We characterized the 3D microanatomical environment of human tuberculous lungs by using micro computed tomography, histopathology, and immunohistochemistry. By using 3D segmentation software, we accurately reconstructed TB granulomas, vasculature, and airways in three dimensions and confirmed our findings by using histopathology and immunohistochemistry. We observed marked heterogeneity in the morphology, volume, and number of TB granulomas in human lung sections. Unlike depictions of granulomas as simple spherical structures, human necrotic granulomas exhibit complex, cylindrical, branched morphologies that are connected to the airways and shaped by the bronchi. The use of 3D imaging of human TB lung sections provides unanticipated insight into the spatial organization of TB granulomas in relation to the airways and vasculature. Our findings highlight the likelihood that a single, structurally complex lesion could be mistakenly viewed as multiple independent lesions when evaluated in two dimensions. In addition, the lack of vascularization within obstructed bronchi establishes a paradigm for antimycobacterial drug tolerance. Lastly, our results suggest that bronchogenic spread of reseeds the lung.
我们目前对结核病(TB)病理生理学的理解受到对动物模型的依赖、人类肺结核组织的匮乏以及传统组织病理学分析的限制,传统组织病理学分析是一种破坏性的二维方法,提供的空间洞察力有限。确定坏死性肉芽肿(结核病的一个特征性表现)的三维(3D)结构,将更准确地为结核病预防策略提供信息。为了确定人类结核性肉芽肿的三维形状及其与大肺组织内气道和血管的空间关系。我们通过使用微型计算机断层扫描、组织病理学和免疫组织化学来表征人类结核性肺的三维微观解剖环境。通过使用3D分割软件,我们在三维空间中准确重建了结核肉芽肿、血管和气道,并通过组织病理学和免疫组织化学证实了我们的发现。我们观察到人类肺切片中结核肉芽肿在形态、体积和数量上存在显著异质性。与将肉芽肿描绘为简单球形结构不同,人类坏死性肉芽肿呈现出复杂的圆柱形、分支形态,与气道相连并由支气管塑形。对人类结核性肺切片进行3D成像,为结核肉芽肿与气道和血管的空间组织提供了意想不到的见解。我们的研究结果凸显了在二维评估时,一个结构复杂的单一病变可能被错误地视为多个独立病变的可能性。此外,阻塞性支气管内缺乏血管化建立了抗分枝杆菌药物耐受性的范例。最后,我们的结果表明支气管源性播散会重新播种肺部。