Suppr超能文献

HotKnots:包括假结在内的RNA二级结构的启发式预测。

HotKnots: heuristic prediction of RNA secondary structures including pseudoknots.

作者信息

Ren Jihong, Rastegari Baharak, Condon Anne, Hoos Holger H

机构信息

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

RNA. 2005 Oct;11(10):1494-504. doi: 10.1261/rna.7284905.

Abstract

We present HotKnots, a new heuristic algorithm for the prediction of RNA secondary structures including pseudoknots. Based on the simple idea of iteratively forming stable stems, our algorithm explores many alternative secondary structures, using a free energy minimization algorithm for pseudoknot free secondary structures to identify promising candidate stems. In an empirical evaluation of the algorithm with 43 sequences taken from the Pseudobase database and from the literature on pseudoknotted structures, we found that overall, in terms of the sensitivity and specificity of predictions, HotKnots outperforms the well-known Pseudoknots algorithm of Rivas and Eddy and the NUPACK algorithm of Dirks and Pierce, both based on dynamic programming approaches for limited classes of pseudoknotted structures. It also outperforms the heuristic Iterated Loop Matching algorithm of Ruan and colleagues, and in many cases gives better results than the genetic algorithm from the STAR package of van Batenburg and colleagues and the recent pknotsRG-mfe algorithm of Reeder and Giegerich. The HotKnots algorithm has been implemented in C/C++ and is available from http://www.cs.ubc.ca/labs/beta/Software/HotKnots.

摘要

我们提出了HotKnots,一种用于预测包括假结在内的RNA二级结构的新启发式算法。基于迭代形成稳定茎干的简单思想,我们的算法探索了许多替代二级结构,使用自由能最小化算法来处理无假结的二级结构,以识别有前景的候选茎干。在对该算法进行实证评估时,我们使用了从Pseudobase数据库和有关假结结构的文献中选取的43个序列。我们发现,总体而言,就预测的敏感性和特异性而言,HotKnots优于著名的Rivas和Eddy的Pseudoknots算法以及Dirks和Pierce的NUPACK算法,这两种算法均基于针对有限类别的假结结构的动态规划方法。它还优于Ruan及其同事的启发式迭代环匹配算法,并且在许多情况下比van Batenburg及其同事的STAR包中的遗传算法以及Reeder和Giegerich最近的pknotsRG - mfe算法给出更好的结果。HotKnots算法已用C/C++实现,可从http://www.cs.ubc.ca/labs/beta/Software/HotKnots获取。

相似文献

7
High sensitivity RNA pseudoknot prediction.高灵敏度RNA假结预测
Nucleic Acids Res. 2007;35(2):656-63. doi: 10.1093/nar/gkl943. Epub 2006 Dec 19.
10
K-partite RNA secondary structures.K部RNA二级结构
J Comput Biol. 2010 Jul;17(7):915-25. doi: 10.1089/cmb.2009.0119.

引用本文的文献

2
Assessment of nucleic acid structure prediction in CASP16.CASP16中核酸结构预测的评估
bioRxiv. 2025 May 10:2025.05.06.652459. doi: 10.1101/2025.05.06.652459.
5
Tying the knot: Unraveling the intricacies of the coronavirus frameshift pseudoknot.系紧纽带:解开冠状病毒移码假结的复杂性。
PLoS Comput Biol. 2024 May 7;20(5):e1011787. doi: 10.1371/journal.pcbi.1011787. eCollection 2024 May.

本文引用的文献

1
Secondary structure prediction of interacting RNA molecules.相互作用RNA分子的二级结构预测
J Mol Biol. 2005 Feb 4;345(5):987-1001. doi: 10.1016/j.jmb.2004.10.082. Epub 2004 Dec 16.
5
Secondary structure prediction for aligned RNA sequences.比对RNA序列的二级结构预测。
J Mol Biol. 2002 Jun 21;319(5):1059-66. doi: 10.1016/S0022-2836(02)00308-X.
6
PseudoBase: structural information on RNA pseudoknots.伪结数据库:RNA伪结的结构信息。
Nucleic Acids Res. 2001 Jan 1;29(1):194-5. doi: 10.1093/nar/29.1.194.
7
RNA pseudoknot prediction in energy-based models.基于能量模型的RNA假结预测
J Comput Biol. 2000;7(3-4):409-27. doi: 10.1089/106652700750050862.
10
Secondary structure of vertebrate telomerase RNA.脊椎动物端粒酶RNA的二级结构
Cell. 2000 Mar 3;100(5):503-14. doi: 10.1016/s0092-8674(00)80687-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验