Tsang Herbert H, Wiese Kay C
1 Applied Research Lab, Trinity Western University, Langley, British Columbia, Canada.
2 School of Computing Science, Simon Fraser University, Surrey, British Columbia, Canada.
Int J Bioinform Res Appl. 2015;11(5):375-96. doi: 10.1504/ijbra.2015.071938.
Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures.
假结是执行重要生物学功能的RNA三级结构。本文讨论了SARNA-Predict-pk,一种基于模拟退火(SA)的RNA假结二级结构预测算法。这里提出的研究扩展了SARNA-Predict的先前工作,并进一步研究了新算法对包含假结的RNA二级结构预测的影响。通过与使用来自七个RNA类别的20个已知单个结构的几种最新预测算法进行比较,对SARNA-Predict-pk的预测准确性性能进行了评估。我们测量了九种预测算法的敏感性和特异性。其中三种是动态规划算法:Pseudoknot(pknotsRE)、NUPACK和pknotsRG-mfe。一种使用统计聚类方法:Sfold,另外五种是启发式算法:SARNA-Predict-pk、ILM、STAR、IPknot和HotKnots算法。本文给出的结果表明,SARNA-Predict-pk在预测准确性方面可以优于其他最新算法。这支持了将所提出的方法用于其他已知结构的假结RNA二级结构预测。