Department of Computer Science and Information Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan, Republic of China.
Phys Med Biol. 2010 Nov 21;55(22):6785-800. doi: 10.1088/0031-9155/55/22/012. Epub 2010 Oct 28.
The Insall-Salvati ratio (ISR) is important for detecting two common clinical signs of knee disease: patella alta and patella baja. Furthermore, large inter-operator differences in ISR measurement make an objective measurement system necessary for better clinical evaluation. In this paper, we define three specific bony landmarks for determining the ISR and then propose an x-ray image analysis system to localize these landmarks and measure the ISR. Due to inherent artifacts in x-ray images, such as unevenly distributed intensities, which make landmark localization difficult, we hence propose a registration-assisted active-shape model (RAASM) to localize these landmarks. We first construct a statistical model from a set of training images based on x-ray image intensity and patella shape. Since a knee x-ray image contains specific anatomical structures, we then design an algorithm, based on edge tracing, for patella feature extraction in order to automatically align the model to the patella image. We can estimate the landmark locations as well as the ISR after registration-assisted model fitting. Our proposed method successfully overcomes drawbacks caused by x-ray image artifacts. Experimental results show great agreement between the ISRs measured by the proposed method and by orthopedic clinicians.
Insall-Salvati 比值(ISR)对于检测两种常见的膝关节疾病临床征象(高位髌骨和低位髌骨)很重要。此外,ISR 测量中存在较大的操作者间差异,这使得客观测量系统对于更好的临床评估变得非常必要。在本文中,我们定义了确定 ISR 的三个特定的骨骼标志点,然后提出了一种 X 射线图像分析系统,以定位这些标志点并测量 ISR。由于 X 射线图像中存在不均匀分布的强度等固有伪影,使得标志点定位变得困难,因此我们提出了一种基于配准辅助主动形状模型(RAASM)的方法来定位这些标志点。我们首先基于 X 射线图像强度和髌骨形状从一组训练图像中构建一个统计模型。由于膝关节 X 射线图像包含特定的解剖结构,因此我们设计了一种基于边缘跟踪的髌骨特征提取算法,以便自动将模型与髌骨图像对齐。配准辅助模型拟合后,我们可以估计标志点位置和 ISR。我们提出的方法成功克服了 X 射线图像伪影引起的缺陷。实验结果表明,我们提出的方法测量的 ISR 与矫形临床医生的测量结果具有很好的一致性。