Suppr超能文献

三种不同的三维自动识别股骨远端标志点方法的验证与比较

Validation and comparison of three different methods for automated identification of distal femoral landmarks in 3D.

作者信息

Berger Luisa, Brößner Peter, Ehreiser Sonja, Tokunaga Kunihiko, Okamoto Masashi, Radermacher Klaus

机构信息

Chair of Medical Engineering, RWTH Aachen University, Aachen, Germany.

Niigata Hip Joint Center, Kameda Daiichi Hospital, Niigata City, Japan.

出版信息

Biomed Tech (Berl). 2025 May 23. doi: 10.1515/bmt-2025-0026.

Abstract

OBJECTIVES

Identification of bony landmarks in medical images is of high importance for 3D planning in orthopaedic surgery. Automated landmark identification has the potential to optimize clinical routines and allows for the scientific analysis of large databases. To the authors' knowledge, no direct comparison of different methods for automated landmark detection on the same dataset has been published to date.

METHODS

We compared 3 methods for automated femoral landmark identification: an artificial neural network, a statistical shape model and a geometric approach. All methods were compared against manual measurements of two raters on the task of identifying 6 femoral landmarks on CT data or derived surface models of 202 femora.

RESULTS

The accuracy of the methods was in the range of the manual measurements and comparable to those reported in previous studies. The geometric approach showed a significantly higher average deviation compared to the manually selected reference landmarks, while there was no statistically significant difference for the neural network and the SSM.

CONCLUSIONS

All fully automated methods show potential for use, depending on the use case. Characteristics of the different methods, such as the input data required (raw CT/segmented bone surface models, amount of training data required) and/or the methods robustness, can be used for method selection in the individual application.

摘要

目的

在医学图像中识别骨标志点对于骨科手术的三维规划至关重要。自动识别骨标志点有可能优化临床流程,并有助于对大型数据库进行科学分析。据作者所知,迄今为止尚未发表在同一数据集上对不同自动骨标志点检测方法进行的直接比较。

方法

我们比较了三种自动识别股骨标志点的方法:人工神经网络、统计形状模型和几何方法。在识别202个股骨的CT数据或派生表面模型上的6个股骨标志点的任务中,将所有方法与两名评估者的手动测量结果进行比较。

结果

这些方法的准确性在手动测量范围内,与先前研究报告的结果相当。与手动选择的参考标志点相比,几何方法显示出明显更高的平均偏差,而神经网络和统计形状模型则没有统计学上的显著差异。

结论

根据具体应用情况,所有全自动方法都显示出应用潜力。不同方法的特点,如所需的输入数据(原始CT/分割骨表面模型、所需训练数据量)和/或方法的稳健性,可用于个别应用中的方法选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验