CNISM and L-NESS, Dipartimento di Fisica del Politecnico di Milano, Polo Regionale di Como, Como, Italy.
Nanotechnology. 2010 Nov 26;21(47):475302. doi: 10.1088/0957-4484/21/47/475302. Epub 2010 Oct 29.
Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.
在过去的十年中,硅锗(Si(1-x)Ge(x))岛在微电子学和光电子学领域的潜在应用引起了广泛关注。在这项工作中,我们提出了一种使用化学气相沉积技术生长富锗岛的新方法。电子束光刻用于预先图案化 Si 衬底,形成材料陷阱。然后,通过低能等离子体增强化学气相沉积进行外延沉积薄的 Ge 膜,导致形成富锗 Si(1-x)Ge(x)岛(x > 0.8),其具有均匀的尺寸分布,相对于衬底图案精确定位。通过原子力显微镜对岛的形态进行了表征,并通过微拉曼光谱研究了岛中的 Ge 含量和应变。这种特性表明岛具有高 Ge 含量和低应变的均匀分布:这表明使用的相对较高的生长速率(0.1nm/s)和较低的温度(650°C)能够限制 Si 混排,同时保持足够长的吸附原子扩散长度,以防止岛在坑外形核。这为使用这些富锗岛在 Si 帽层中诱导应变提供了新的可能性。