Suppr超能文献

从亲和纯化质谱数据预测直接蛋白质相互作用。

Predicting direct protein interactions from affinity purification mass spectrometry data.

作者信息

Kim Ethan Dh, Sabharwal Ashish, Vetta Adrian R, Blanchette Mathieu

机构信息

McGill Centre for Bioinformatics, McGill University, Quebec, Canada.

出版信息

Algorithms Mol Biol. 2010 Oct 29;5:34. doi: 10.1186/1748-7188-5-34.

Abstract

BACKGROUND

Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest.

RESULTS

We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that produced the observed data. We address this challenging graph theoretical problem by first characterizing signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct PPI network is then inferred using a genetic algorithm.Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and its performance is measured against a high-quality interaction dataset.

CONCLUSIONS

As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model for indirect interactions, our method provides a good performance on the test networks.

摘要

背景

亲和纯化后进行质谱鉴定(AP-MS)是一种在体内观察蛋白质-蛋白质相互作用(PPI)的越来越流行的方法。然而,AP-MS的一个缺点是它容易检测到与直接物理相互作用混合的间接相互作用。因此,区分直接相互作用和间接相互作用的能力备受关注。

结果

我们首先为AP-MS实验捕获的相互作用提出了一个简单的概率模型,在此模型下制定了区分直接相互作用和间接相互作用的问题。然后,给定理想化的定量AP-MS数据,我们研究识别产生观测数据的最可能的直接相互作用集的问题。我们通过首先表征能够识别弱连接节点以及网络密集区域的特征来解决这个具有挑战性的图论问题。然后使用遗传算法推断其余的直接PPI网络。我们的算法在模拟网络和生物网络上均表现出良好的性能,具有非常高的灵敏度和特异性。然后该算法用于从一组酵母的AP-MS PPI数据预测直接相互作用,并根据高质量的相互作用数据集测量其性能。

结论

随着AP-MS流程灵敏度的提高,检测到的间接相互作用比例也会增加,从而使得区分它们的能力更加必要。尽管我们的间接相互作用模型很简单,但我们的方法在测试网络上表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b21/2991326/13cdf514da5f/1748-7188-5-34-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验