Suppr超能文献

基于扩散张量的快速行进法构建人类脑连接网络模型。

Diffusion tensor-based fast marching for modeling human brain connectivity network.

机构信息

The Center for Bioengineering and Informatics, The Methodist Hospital Research Institute and Department of Radiology, The Methodist Hospital, Weill Cornell Medical College, Houston, TX, USA.

出版信息

Comput Med Imaging Graph. 2011 Apr;35(3):167-78. doi: 10.1016/j.compmedimag.2010.07.008. Epub 2010 Oct 28.

Abstract

Diffusion tensor imaging (DTI) is an effective modality in studying the connectivity of the brain. To eliminate possible biases caused by fiber extraction approaches due to low spatial resolution of DTI and the number of fibers obtained, the fast marching (FM) algorithm based on the whole diffusion tensor information is proposed to model and study the brain connectivity network. Our observation is that the connectivity extracted from the whole tensor field would be more robust and reliable for constructing brain connectivity network using DTI data. To construct the connectivity network, in this paper, the arrival time map and the velocity map generated by the FM algorithm are combined to define the connectivity strength among different brain regions. The conventional fiber tracking-based and the proposed tensor-based FM connectivity methods are compared, and the results indicate that the connectivity features obtained using the FM-based method agree better with the neuromorphical studies of the human brain.

摘要

弥散张量成像(DTI)是研究大脑连通性的有效手段。为了消除由于 DTI 的空间分辨率低和获得的纤维数量少而导致的纤维提取方法可能产生的偏差,提出了基于全弥散张量信息的快速行进(FM)算法来对脑连接网络进行建模和研究。我们观察到,使用 DTI 数据构建脑连接网络时,从整个张量场中提取的连接更稳健、更可靠。为了构建连接网络,本文将 FM 算法生成的到达时间图和速度图结合起来,定义不同脑区之间的连接强度。对传统的基于纤维追踪的方法和本文提出的基于张量的 FM 连接方法进行了比较,结果表明,使用基于 FM 的方法获得的连接特征与人类大脑的神经形态学研究更吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc5e/3058145/d6f318c7d1c7/nihms243070f1.jpg

相似文献

1
Diffusion tensor-based fast marching for modeling human brain connectivity network.基于扩散张量的快速行进法构建人类脑连接网络模型。
Comput Med Imaging Graph. 2011 Apr;35(3):167-78. doi: 10.1016/j.compmedimag.2010.07.008. Epub 2010 Oct 28.
5
Construction of multi-scale common brain networks based on DICCCOL.基于DICCCOL构建多尺度共同脑网络。
Inf Process Med Imaging. 2013;23:692-704. doi: 10.1007/978-3-642-38868-2_58.
6
Fiber clustering versus the parcellation-based connectome.纤维聚类与基于分割的连接组学。
Neuroimage. 2013 Oct 15;80:283-9. doi: 10.1016/j.neuroimage.2013.04.066. Epub 2013 Apr 28.
7
FRATS: Functional Regression Analysis of DTI Tract Statistics.FRATS:DTI 束统统计的功能回归分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1039-49. doi: 10.1109/TMI.2010.2040625. Epub 2010 Mar 22.
8
Brain connectivity using geodesics in HARDI.利用HARDI中的测地线进行脑连接性研究。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):482-9. doi: 10.1007/978-3-642-04271-3_59.
10
Quantifying brain connectivity: a comparative tractography study.量化脑连接性:一项对比性纤维束成像研究。
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):886-93. doi: 10.1007/978-3-642-04268-3_109.

本文引用的文献

6
Disrupted small-world networks in schizophrenia.精神分裂症中被破坏的小世界网络。
Brain. 2008 Apr;131(Pt 4):945-61. doi: 10.1093/brain/awn018. Epub 2008 Feb 25.
8
Brain tissue segmentation based on DTI data.基于扩散张量成像(DTI)数据的脑组织分割
Neuroimage. 2007 Oct 15;38(1):114-23. doi: 10.1016/j.neuroimage.2007.07.002. Epub 2007 Jul 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验