Suppr超能文献

端粒和着丝粒异染色质中 DNA 序列的差异维持。

Differential maintenance of DNA sequences in telomeric and centromeric heterochromatin.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Genetics. 2011 Jan;187(1):51-60. doi: 10.1534/genetics.110.122994. Epub 2010 Nov 1.

Abstract

Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the centromeric region of the Y chromosome >13 MYA, providing a unique opportunity to compare the structural evolution of this retrotransposon in two contexts. We find that these retrotransposon arrays, both heterochromatic, are maintained quite differently, resulting in sequence organizations that apparently reflect different roles in the two chromosomal environments. The telomere array has grown only by transposition of new elements to the chromosome end; the centromeric array instead has grown by repeated amplifications of segments of the original telomere array. Many elements in the telomere have been variably 5'-truncated apparently by gradual erosion and irregular deletions of the chromosome end; however, a significant fraction (4 and possibly 5 or 6 of 15 elements examined) remain complete and capable of further retrotransposition. In contrast, each element in the centromere region has lost ≥ 40% of its sequence by internal, rather than terminal, deletions, and no element retains a significant part of the original coding region. Thus the centromeric array has been restructured to resemble the highly repetitive satellite sequences typical of centromeres in multicellular organisms, whereas, over a similar or longer time period, the telomere array has maintained its ability to provide retrotransposons competent to extend telomere ends.

摘要

异染色质中的重复 DNA 给全基因组测序带来了巨大的困难;因此,多细胞生物基因组的很大一部分的序列组织相对未知。现在,两个已测序的 BAC 允许我们将果蝇端粒中的端粒反转录转座子阵列与 1300 万年前转座到 Y 染色体着丝粒区的端粒反转录转座子阵列进行比较,为在两个背景下比较这种反转录转座子的结构进化提供了独特的机会。我们发现,这些反转录转座子阵列都是异染色质的,但它们的维持方式却大不相同,导致的序列组织显然反映了它们在两种染色体环境中的不同作用。端粒阵列仅通过将新元件转座到染色体末端而增长;而着丝粒阵列则通过对原始端粒阵列的片段进行重复扩增而增长。端粒中的许多元件已经通过染色体末端的逐渐侵蚀和不规则缺失而发生了 5'端的可变截断;然而,很大一部分(15 个元件中观察到的 4 个,可能是 5 个或 6 个)仍然完整,能够进一步反转录转座。相比之下,着丝粒区域中的每个元件都通过内部而非末端缺失丢失了≥40%的序列,并且没有元件保留了原始编码区的重要部分。因此,着丝粒阵列已经被重构,以类似于多细胞生物中典型的着丝粒高度重复的卫星序列;而在类似或更长的时间内,端粒阵列保持了提供能够延伸端粒末端的反转录转座子的能力。

相似文献

1
Differential maintenance of DNA sequences in telomeric and centromeric heterochromatin.
Genetics. 2011 Jan;187(1):51-60. doi: 10.1534/genetics.110.122994. Epub 2010 Nov 1.
2
Euchromatic and heterochromatic domains at Drosophila telomeres.
Biochem Cell Biol. 2005 Aug;83(4):477-85. doi: 10.1139/o05-053.
3
Genomic organization of the Drosophila telomere retrotransposable elements.
Genome Res. 2006 Oct;16(10):1231-40. doi: 10.1101/gr.5348806. Epub 2006 Sep 8.
6
Two distinct domains in Drosophila melanogaster telomeres.
Genetics. 2005 Dec;171(4):1767-77. doi: 10.1534/genetics.105.048827. Epub 2005 Sep 2.
8
Retrotransposons that maintain chromosome ends.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20317-24. doi: 10.1073/pnas.1100278108. Epub 2011 Aug 5.
9
Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase.
Genome Res. 2007 Dec;17(12):1909-18. doi: 10.1101/gr.6365107. Epub 2007 Nov 7.

引用本文的文献

1
Centromere structure and function: lessons from Drosophila.
Genetics. 2023 Dec 6;225(4). doi: 10.1093/genetics/iyad170.
3
A high resolution map of mammalian X chromosome fragile regions assessed by large-scale comparative genomics.
Mamm Genome. 2014 Dec;25(11-12):618-35. doi: 10.1007/s00335-014-9537-8. Epub 2014 Aug 3.
4
Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon.
Genetica. 2012 Jun;140(4-6):149-58. doi: 10.1007/s10709-012-9666-5. Epub 2012 Aug 4.
6
Adapting to life at the end of the line: How Drosophila telomeric retrotransposons cope with their job.
Mob Genet Elements. 2011 Jul;1(2):128-134. doi: 10.4161/mge.1.2.16914. Epub 2011 Jul 1.
7
Retrotransposons that maintain chromosome ends.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20317-24. doi: 10.1073/pnas.1100278108. Epub 2011 Aug 5.

本文引用的文献

1
Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5064-9. doi: 10.1073/pnas.1000612107. Epub 2010 Mar 1.
2
Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content.
Nature. 2010 Jan 28;463(7280):536-9. doi: 10.1038/nature08700. Epub 2010 Jan 13.
3
Gag proteins of Drosophila telomeric retrotransposons: collaborative targeting to chromosome ends.
Genetics. 2010 Mar;184(3):629-36. doi: 10.1534/genetics.109.109744. Epub 2009 Dec 21.
4
Transposable elements in gene regulation and in the evolution of vertebrate genomes.
Curr Opin Genet Dev. 2009 Dec;19(6):607-12. doi: 10.1016/j.gde.2009.10.013. Epub 2009 Nov 13.
5
Major evolutionary transitions in centromere complexity.
Cell. 2009 Sep 18;138(6):1067-82. doi: 10.1016/j.cell.2009.08.036.
6
The impact of retrotransposons on human genome evolution.
Nat Rev Genet. 2009 Oct;10(10):691-703. doi: 10.1038/nrg2640.
7
Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability.
Genome Res. 2009 Dec;19(12):2202-13. doi: 10.1101/gr.092080.109. Epub 2009 Sep 8.
8
Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome.
Genes Dev. 2009 Aug 15;23(16):1831-42. doi: 10.1101/gad.1811209.
10
Control of telomere length by a trimming mechanism that involves generation of t-circles.
EMBO J. 2009 Apr 8;28(7):799-809. doi: 10.1038/emboj.2009.42. Epub 2009 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验