Suppr超能文献

适应生命尽头的生活:果蝇端粒逆转座子如何履行其职责。

Adapting to life at the end of the line: How Drosophila telomeric retrotransposons cope with their job.

作者信息

Pardue Mary-Lou, Debaryshe Pg

机构信息

Department of Biology; Massachusetts Institute of Technology; Cambridge, MA USA.

出版信息

Mob Genet Elements. 2011 Jul;1(2):128-134. doi: 10.4161/mge.1.2.16914. Epub 2011 Jul 1.

Abstract

Drosophila telomeres are remarkable because they are maintained by telomere-specific retrotransposons, rather than the enzyme telomerase that maintains telomeres in almost every other eukaryotic organism. Successive transpositions of the Drosophila retrotransposons onto chromosome ends produce long head-to-tail arrays that are analogous in form and function to the long arrays of short repeats produced by telomerase in other organisms. Nevertheless, Drosophila telomere repeats are retrotransposons, complex entities three orders of magnitude longer than simple telomerase repeats. During the >40-60 My they have been coevolving with their host, these retrotransposons perforce have evolved a complex relationship with Drosophila cells to maintain populations of active elements while carrying out functions analogous to those of telomerase repeats in other organisms. Although they have assumed a vital role in maintaining the Drosophila genome, the three Drosophila telomere-specific elements are non-LTR retrotransposons, closely related to some of the best known non-telomeric elements in the Drosophila genome. Thus, these elements offer an opportunity to study ways in which retrotransposons and their host cells can coevolve cooperatively. The telomere-specific elements display several characteristics that appear important to their roles at the telomere; for example, we have recently reported that they have evolved at least two innovative mechanisms for protecting essential sequence on their 5'ends. Because every element serves as the end of the chromosome immediately after it transposes, its 5'end is subject to chromosomal erosion until it is capped by a new transposition. These two mechanisms make it possible for at least a significant fraction of elements to survive their initial time as the chromosome end without losing sequence necessary to be competent for subsequent transposition. Analysis of sequence from >90 kb of assembled telomere array shows that these mechanisms for small scale sequence protection are part of a unified set which maintains telomere length homeostasis. Here we concentrate on recently elucidated mechanisms that have evolved to provide this small scale 5' protection.

摘要

果蝇的端粒很特别,因为它们是由端粒特异性逆转座子维持的,而不是由几乎在所有其他真核生物中维持端粒的端粒酶。果蝇逆转座子连续转座到染色体末端产生了长的头对头排列,其形式和功能类似于其他生物中端粒酶产生的短重复序列的长排列。然而,果蝇端粒重复序列是逆转座子,是比简单的端粒酶重复序列长三个数量级的复杂实体。在超过4000万至6000万年的时间里,这些逆转座子与它们的宿主共同进化,它们必然与果蝇细胞进化出了复杂的关系,以维持活跃元件群体,同时执行与其他生物中端粒酶重复序列类似的功能。尽管它们在维持果蝇基因组方面发挥了至关重要的作用,但这三种果蝇端粒特异性元件是非LTR逆转座子,与果蝇基因组中一些最著名的非端粒元件密切相关。因此,这些元件提供了一个机会来研究逆转座子及其宿主细胞如何协同共同进化。端粒特异性元件表现出一些对它们在端粒中的作用似乎很重要的特征;例如,我们最近报道它们已经进化出至少两种创新机制来保护其5'端的基本序列。因为每个元件在转座后立即作为染色体末端,其5'端会受到染色体侵蚀,直到被新的转座所覆盖。这两种机制使得至少相当一部分元件能够在作为染色体末端的初始阶段存活下来,而不会丢失后续转座所需的序列。对超过90kb的组装端粒阵列序列的分析表明,这些小规模序列保护机制是维持端粒长度稳态的统一机制的一部分。在这里,我们集中讨论最近阐明的为提供这种小规模5'保护而进化的机制。

相似文献

1
Adapting to life at the end of the line: How Drosophila telomeric retrotransposons cope with their job.
Mob Genet Elements. 2011 Jul;1(2):128-134. doi: 10.4161/mge.1.2.16914. Epub 2011 Jul 1.
2
Retrotransposons that maintain chromosome ends.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20317-24. doi: 10.1073/pnas.1100278108. Epub 2011 Aug 5.
3
Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements.
J Mol Biol. 2020 Jul 10;432(15):4305-4321. doi: 10.1016/j.jmb.2020.06.004. Epub 2020 Jun 5.
4
Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase.
Genome Res. 2007 Dec;17(12):1909-18. doi: 10.1101/gr.6365107. Epub 2007 Nov 7.
5
Drosophila telomeres: A variation on the telomerase theme.
Fly (Austin). 2008 May-Jun;2(3):101-10. doi: 10.4161/fly.6393. Epub 2008 May 4.
6
Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres.
Annu Rev Genet. 2003;37:485-511. doi: 10.1146/annurev.genet.38.072902.093115.
7
Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5064-9. doi: 10.1073/pnas.1000612107. Epub 2010 Mar 1.
8
Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons.
J Virol. 2003 Jun;77(11):6376-84. doi: 10.1128/jvi.77.11.6376-6384.2003.
9
Drosophila telomere transposons: genetically active elements in heterochromatin.
Genetica. 2000;109(1-2):45-52. doi: 10.1023/a:1026540301503.
10
Role of piRNAs in the Drosophila telomere homeostasis.
Mob Genet Elements. 2011 Nov 1;1(4):274-278. doi: 10.4161/mge.18301.

引用本文的文献

1
piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs.
FEBS J. 2025 Jun;292(11):2715-2736. doi: 10.1111/febs.17360. Epub 2024 Dec 30.
3
Jump around: transposons in and out of the laboratory.
F1000Res. 2020 Feb 24;9. doi: 10.12688/f1000research.21018.1. eCollection 2020.
4
Border collies of the genome: domestication of an autonomous retrovirus-like transposon.
Curr Genet. 2019 Feb;65(1):71-78. doi: 10.1007/s00294-018-0857-1. Epub 2018 Jun 21.
5
Protecting and Diversifying the Germline.
Genetics. 2018 Feb;208(2):435-471. doi: 10.1534/genetics.117.300208.
6
Transposable Element Domestication As an Adaptation to Evolutionary Conflicts.
Trends Genet. 2017 Nov;33(11):817-831. doi: 10.1016/j.tig.2017.07.011. Epub 2017 Aug 24.
7
MTV, an ssDNA Protecting Complex Essential for Transposon-Based Telomere Maintenance in Drosophila.
PLoS Genet. 2016 Nov 11;12(11):e1006435. doi: 10.1371/journal.pgen.1006435. eCollection 2016 Nov.
8
Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance.
Front Genet. 2016 Jan 5;6:358. doi: 10.3389/fgene.2015.00358. eCollection 2015.
9
The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster.
Chromosoma. 2016 Jun;125(3):373-88. doi: 10.1007/s00412-015-0540-y. Epub 2015 Sep 16.
10
The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres.
PLoS Genet. 2015 Jun 25;11(6):e1005260. doi: 10.1371/journal.pgen.1005260. eCollection 2015 Jun.

本文引用的文献

1
Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins.
Nat Rev Cancer. 2011 Mar;11(3):161-76. doi: 10.1038/nrc3025.
2
Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21052-7. doi: 10.1073/pnas.1015926107. Epub 2010 Nov 18.
3
Differential maintenance of DNA sequences in telomeric and centromeric heterochromatin.
Genetics. 2011 Jan;187(1):51-60. doi: 10.1534/genetics.110.122994. Epub 2010 Nov 1.
4
Evolution of CST function in telomere maintenance.
Cell Cycle. 2010 Aug 15;9(16):3157-65. doi: 10.4161/cc.9.16.12547. Epub 2010 Aug 26.
5
Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5064-9. doi: 10.1073/pnas.1000612107. Epub 2010 Mar 1.
6
HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner.
EMBO J. 2010 Feb 17;29(4):819-29. doi: 10.1038/emboj.2009.394. Epub 2010 Jan 7.
8
Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in Drosophila melanogaster.
Genetics. 2008 Dec;180(4):1821-32. doi: 10.1534/genetics.108.093625. Epub 2008 Oct 9.
9
The Stability of Broken Ends of Chromosomes in Zea Mays.
Genetics. 1941 Mar;26(2):234-82. doi: 10.1093/genetics/26.2.234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验