Suppr超能文献

水稻姜黄素合酶一锅法形成二芳基庚烷骨架的结构基础。

Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.

机构信息

Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19778-83. doi: 10.1073/pnas.1011499107. Epub 2010 Nov 1.

Abstract

Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.

摘要

水稻姜黄素合酶(CUS)是一种植物特异性的 III 型聚酮合酶(PKS),通过两分子 4-香豆酰辅酶 A 和一分子丙二酰辅酶 A 的缩合,催化双甲氧基姜黄素的 C(6)-C(7)-C(6)二芳基庚烷骨架的惊人一锅法形成。水稻 CUS 的晶体结构在 2.5-Å 分辨率下得到解决,揭示了一种独特的、向下扩展的活性位点结构,这在已知的 III 型 PKS 中是以前未识别的。大的活性位点腔足够长,可以容纳两个 C(6)-C(3)香豆酰单元和一个丙二酰单元。此外,晶体结构表明存在一个假定的亲核水分子,它与活性位点中心的催化半胱氨酸 Cys174 附近的 Ser351-Asn142-H(2)O-Tyr207-Glu202 形成氢键网络。这些观察结果表明,CUS 采用独特的催化机制实现 C(6)-C(7)-C(6) 支架的一锅法形成。因此,CUS 利用亲核水在二酮阶段终止初始聚酮链延伸。酶结合中间产物的硫酯键断裂生成 4-香豆酰二酮酸,然后将其保留在向下扩展的口袋中,以备随后与第二个 4-香豆酰辅酶 A 起始物进行脱羧缩合,生成双甲氧基姜黄素。基于结构的定点突变体 M265L 和 G274F 改变了底物和产物特异性,以接受 4-羟基苯丙酰辅酶 A 作为起始物,生成四氢双甲氧基姜黄素。这些发现不仅为 CUS 的催化机制提供了结构基础,而且还为拓展 III 型 PKS 酶的生物合成谱提供了进一步的策略。

相似文献

5
A structure-based mechanism for benzalacetone synthase from Rheum palmatum.基于结构的大黄酰丙酮合酶的机制。
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):669-73. doi: 10.1073/pnas.0909982107. Epub 2009 Dec 18.
6
Benzalacetone synthase.苄叉丙酮合酶。
Front Plant Sci. 2012 Mar 21;3:57. doi: 10.3389/fpls.2012.00057. eCollection 2012.

引用本文的文献

10
Recent Advances in the Recombinant Biosynthesis of Polyphenols.多酚重组生物合成的最新进展
Front Microbiol. 2017 Nov 16;8:2259. doi: 10.3389/fmicb.2017.02259. eCollection 2017.

本文引用的文献

3
A structure-based mechanism for benzalacetone synthase from Rheum palmatum.基于结构的大黄酰丙酮合酶的机制。
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):669-73. doi: 10.1073/pnas.0909982107. Epub 2009 Dec 18.
8
Multiple biological activities of curcumin: a short review.姜黄素的多种生物学活性:简要综述。
Life Sci. 2006 Mar 27;78(18):2081-7. doi: 10.1016/j.lfs.2005.12.007. Epub 2006 Jan 18.
9
Curcumin: the story so far.姜黄素:迄今为止的情况。
Eur J Cancer. 2005 Sep;41(13):1955-68. doi: 10.1016/j.ejca.2005.05.009.
10
Chemopreventive and therapeutic effects of curcumin.姜黄素的化学预防和治疗作用。
Cancer Lett. 2005 Jun 8;223(2):181-90. doi: 10.1016/j.canlet.2004.09.041. Epub 2004 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验