Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19778-83. doi: 10.1073/pnas.1011499107. Epub 2010 Nov 1.
Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.
水稻姜黄素合酶(CUS)是一种植物特异性的 III 型聚酮合酶(PKS),通过两分子 4-香豆酰辅酶 A 和一分子丙二酰辅酶 A 的缩合,催化双甲氧基姜黄素的 C(6)-C(7)-C(6)二芳基庚烷骨架的惊人一锅法形成。水稻 CUS 的晶体结构在 2.5-Å 分辨率下得到解决,揭示了一种独特的、向下扩展的活性位点结构,这在已知的 III 型 PKS 中是以前未识别的。大的活性位点腔足够长,可以容纳两个 C(6)-C(3)香豆酰单元和一个丙二酰单元。此外,晶体结构表明存在一个假定的亲核水分子,它与活性位点中心的催化半胱氨酸 Cys174 附近的 Ser351-Asn142-H(2)O-Tyr207-Glu202 形成氢键网络。这些观察结果表明,CUS 采用独特的催化机制实现 C(6)-C(7)-C(6) 支架的一锅法形成。因此,CUS 利用亲核水在二酮阶段终止初始聚酮链延伸。酶结合中间产物的硫酯键断裂生成 4-香豆酰二酮酸,然后将其保留在向下扩展的口袋中,以备随后与第二个 4-香豆酰辅酶 A 起始物进行脱羧缩合,生成双甲氧基姜黄素。基于结构的定点突变体 M265L 和 G274F 改变了底物和产物特异性,以接受 4-羟基苯丙酰辅酶 A 作为起始物,生成四氢双甲氧基姜黄素。这些发现不仅为 CUS 的催化机制提供了结构基础,而且还为拓展 III 型 PKS 酶的生物合成谱提供了进一步的策略。