Suppr超能文献

从枳椇中克隆和结构功能分析新型喹诺酮和吖啶酮类化合物的 III 型聚酮合酶。

Cloning and structure-function analyses of quinolone- and acridone-producing novel type III polyketide synthases from Citrus microcarpa.

机构信息

From the Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033.

出版信息

J Biol Chem. 2013 Oct 4;288(40):28845-58. doi: 10.1074/jbc.M113.493155. Epub 2013 Aug 20.

Abstract

Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56-60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the "single product" by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å(3)) is almost as large as that of M. sativa CHS (750 Å(3)), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å(3)) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases.

摘要

从芸香科柑橘属小翼橙中克隆到两个新型的 III 型聚酮合酶,即喹诺酮合酶(QNS)和吖啶酮合酶(ACS)。C. microcarpa QNS 的推导氨基酸序列是独特的,它与 C. microcarpa ACS、紫花苜蓿查尔酮合酶(CHS)和之前报道的 Aegle marmelos QNS 的同源性仅为 56-60%。与产生喹诺酮和吖啶酮的 A. marmelos QNS 不同,C. microcarpa QNS 通过 N-甲基邻氨基苯甲酸酰基辅酶 A 和丙二酰辅酶 A 的一步缩合,产生 4-羟基-N-甲基喹诺酮作为“单一产物”。然而,C. microcarpa ACS 表现出广泛的底物特异性,能够分别从 4-香豆酰辅酶 A、苯甲酰辅酶 A 和己酰辅酶 A 产生吖啶酮、喹诺酮、查尔酮、苯甲酮和间苯三酚。此外,通过分别解析 C. microcarpa QNS 和 ACS 的 X 射线晶体结构,分辨率分别达到 2.47 和 2.35 Å,揭示了这两种酶的活性中心入口都很宽。因此,宽的活性中心入口为结合催化中心内的大体积 N-甲基邻氨基苯甲酸酰基辅酶 A 提供了足够的空间。然而,C. microcarpa ACS 的活性位点腔体积(760 Å(3))几乎与 M. sativa CHS 的相同(750 Å(3)),并且 ACS 采用与 CHS 相似的活性位点腔和催化机制产生吖啶酮。相比之下,C. microcarpa QNS 的腔体积(290 Å(3))明显较小,这使得该酶产生二酮基喹诺酮。这些结果以及突变分析为 III 型聚酮合酶衍生的蒽酰胺类产物产生喹诺酮和吖啶酮生物碱提供了第一个结构基础。

相似文献

2
Starter substrate specificities of wild-type and mutant polyketide synthases from Rutaceae.
Phytochemistry. 2005 Feb;66(3):277-84. doi: 10.1016/j.phytochem.2004.11.023.
3
An acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata.
FEBS J. 2007 Feb;274(4):1073-82. doi: 10.1111/j.1742-4658.2007.05656.x. Epub 2007 Jan 22.
5
Ectopic expression and functional characterization of type III polyketide synthase mutants from Emblica officinalis Gaertn.
Plant Cell Rep. 2016 Oct;35(10):2077-90. doi: 10.1007/s00299-016-2020-0. Epub 2016 Jul 12.
6
Specificities of functionally expressed chalcone and acridone synthases from Ruta graveolens.
Eur J Biochem. 2000 Nov;267(22):6552-9. doi: 10.1046/j.1432-1327.2000.01746.x.
7
Transformation of acridone synthase to chalcone synthase.
FEBS Lett. 2001 Nov 23;508(3):413-7. doi: 10.1016/s0014-5793(01)03061-7.

引用本文的文献

1
Anthranilate at the interface of tryptophan and specialized metabolite biosynthesis.
Front Plant Sci. 2025 Jul 8;16:1625337. doi: 10.3389/fpls.2025.1625337. eCollection 2025.
2
Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity.
Commun Biol. 2024 May 14;7(1):566. doi: 10.1038/s42003-024-06152-2.
3
Cloning of three type III polyketide synthases and formation of polyketides in recombinant using cinnamic acid analogs as substrates.
Heliyon. 2024 Mar 9;10(6):e27698. doi: 10.1016/j.heliyon.2024.e27698. eCollection 2024 Mar 30.
4
Enzymatic synthesis of 2-hydroxy-4-quinolizin-4-one scaffolds by integrating coenzyme a ligases and a type III PKS from .
RSC Adv. 2020 Jun 22;10(40):23566-23572. doi: 10.1039/d0ra04133e. eCollection 2020 Jun 19.
5
An Overview of the Medicinally Important Plant Type III PKS Derived Polyketides.
Front Plant Sci. 2021 Oct 14;12:746908. doi: 10.3389/fpls.2021.746908. eCollection 2021.
7
How structural subtleties lead to molecular diversity for the type III polyketide synthases.
J Biol Chem. 2019 Oct 11;294(41):15121-15136. doi: 10.1074/jbc.REV119.006129. Epub 2019 Aug 30.
8
Molecular architectures of benzoic acid-specific type III polyketide synthases.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1007-1019. doi: 10.1107/S2059798317016618. Epub 2017 Nov 30.
9
2-Alkylquinolone alkaloid biosynthesis in the medicinal plant involves collaboration of two novel type III polyketide synthases.
J Biol Chem. 2017 Jun 2;292(22):9117-9135. doi: 10.1074/jbc.M117.778977. Epub 2017 Apr 14.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13504-9. doi: 10.1073/pnas.1107782108. Epub 2011 Aug 8.
4
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
5
Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase.
J Am Chem Soc. 2011 Apr 6;133(13):4746-9. doi: 10.1021/ja2006737. Epub 2011 Mar 10.
6
Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19778-83. doi: 10.1073/pnas.1011499107. Epub 2010 Nov 1.
7
Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases.
Nat Prod Rep. 2010 Jun;27(6):809-38. doi: 10.1039/b909988n. Epub 2010 Apr 1.
8
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
9
A structure-based mechanism for benzalacetone synthase from Rheum palmatum.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):669-73. doi: 10.1073/pnas.0909982107. Epub 2009 Dec 18.
10
Molecular replacement with MOLREP.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5. doi: 10.1107/S0907444909042589. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验