From the Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033.
J Biol Chem. 2013 Oct 4;288(40):28845-58. doi: 10.1074/jbc.M113.493155. Epub 2013 Aug 20.
Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56-60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the "single product" by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å(3)) is almost as large as that of M. sativa CHS (750 Å(3)), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å(3)) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases.
从芸香科柑橘属小翼橙中克隆到两个新型的 III 型聚酮合酶,即喹诺酮合酶(QNS)和吖啶酮合酶(ACS)。C. microcarpa QNS 的推导氨基酸序列是独特的,它与 C. microcarpa ACS、紫花苜蓿查尔酮合酶(CHS)和之前报道的 Aegle marmelos QNS 的同源性仅为 56-60%。与产生喹诺酮和吖啶酮的 A. marmelos QNS 不同,C. microcarpa QNS 通过 N-甲基邻氨基苯甲酸酰基辅酶 A 和丙二酰辅酶 A 的一步缩合,产生 4-羟基-N-甲基喹诺酮作为“单一产物”。然而,C. microcarpa ACS 表现出广泛的底物特异性,能够分别从 4-香豆酰辅酶 A、苯甲酰辅酶 A 和己酰辅酶 A 产生吖啶酮、喹诺酮、查尔酮、苯甲酮和间苯三酚。此外,通过分别解析 C. microcarpa QNS 和 ACS 的 X 射线晶体结构,分辨率分别达到 2.47 和 2.35 Å,揭示了这两种酶的活性中心入口都很宽。因此,宽的活性中心入口为结合催化中心内的大体积 N-甲基邻氨基苯甲酸酰基辅酶 A 提供了足够的空间。然而,C. microcarpa ACS 的活性位点腔体积(760 Å(3))几乎与 M. sativa CHS 的相同(750 Å(3)),并且 ACS 采用与 CHS 相似的活性位点腔和催化机制产生吖啶酮。相比之下,C. microcarpa QNS 的腔体积(290 Å(3))明显较小,这使得该酶产生二酮基喹诺酮。这些结果以及突变分析为 III 型聚酮合酶衍生的蒽酰胺类产物产生喹诺酮和吖啶酮生物碱提供了第一个结构基础。