Suppr超能文献

使用参数扩展MCEM算法的多元概率单位模型的似然分析

Likelihood Analysis of Multivariate Probit Models Using a Parameter Expanded MCEM Algorithm.

作者信息

Xu Huiping, Craig Bruce A

机构信息

Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762 (

出版信息

Technometrics. 2010 Aug 1;52(2):340-348. doi: 10.1198/TECH.2010.09055.

Abstract

Multivariate binary data arise in a variety of settings. In this paper, we propose a practical and efficient computational framework for maximum likelihood estimation of multivariate probit regression models. This approach uses the Monte Carlo EM (MCEM) algorithm, with parameter expansion to complete the M-step, to avoid the direct evaluation of the intractable multivariate normal orthant probabilities. The parameter expansion not only enables a closed-form solution in the M-step but also improves efficiency. Using the simulation studies, we compare the performance of our approach with the MCEM algorithms developed by Chib and Greenberg (1998) and Song and Lee (2005), as well as the iterative approach proposed by Li and Schafer (2008). Our approach is further illustrated using a real-world example.

摘要

多变量二元数据出现在各种场景中。在本文中,我们提出了一个实用且高效的计算框架,用于多变量概率单位回归模型的最大似然估计。该方法使用蒙特卡罗期望最大化(MCEM)算法,并通过参数扩展来完成M步,以避免直接计算难以处理的多变量正态象限概率。参数扩展不仅能在M步中得到闭式解,还能提高效率。通过模拟研究,我们将我们的方法与Chib和Greenberg(1998)以及Song和Lee(2005)开发的MCEM算法,以及Li和Schafer(2008)提出的迭代方法的性能进行了比较。我们通过一个实际例子进一步说明了我们的方法。

相似文献

1
Likelihood Analysis of Multivariate Probit Models Using a Parameter Expanded MCEM Algorithm.
Technometrics. 2010 Aug 1;52(2):340-348. doi: 10.1198/TECH.2010.09055.
2
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems.
BMC Bioinformatics. 2012 May 1;13:68. doi: 10.1186/1471-2105-13-68.
3
Nesting Monte Carlo EM for high-dimensional item factor analysis.
J Stat Comput Simul. 2013;83(1):25-36. doi: 10.1080/00949655.2011.599810. Epub 2011 Jul 19.
4
Extended mixture factor analysis model with covariates for mixed binary and continuous responses.
Stat Med. 2011 Sep 20;30(21):2634-47. doi: 10.1002/sim.4310. Epub 2011 Jul 22.
5
Parameter-expanded data augmentation for analyzing correlated binary data using multivariate probit models.
Stat Med. 2020 Nov 10;39(25):3637-3652. doi: 10.1002/sim.8685. Epub 2020 Jul 24.
6
A hybrid EM and Monte Carlo EM algorithm and its application to analysis of transmission of infectious diseases.
Biometrics. 2012 Dec;68(4):1238-49. doi: 10.1111/j.1541-0420.2012.01757.x. Epub 2012 Apr 16.
7
A general algorithm for error-in-variables regression modelling using Monte Carlo expectation maximization.
PLoS One. 2023 Apr 3;18(4):e0283798. doi: 10.1371/journal.pone.0283798. eCollection 2023.
8
Bayesian analysis of longitudinal binary responses based on the multivariate probit model: A comparison of five methods.
Stat Methods Med Res. 2022 Dec;31(12):2261-2286. doi: 10.1177/09622802221122403. Epub 2022 Sep 21.
9
Clumped-MCEM: Inference for multistep transcriptional processes.
Comput Biol Chem. 2019 Aug;81:16-20. doi: 10.1016/j.compbiolchem.2019.107092. Epub 2019 Aug 1.
10
Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm.
Lifetime Data Anal. 2002 Dec;8(4):349-60. doi: 10.1023/a:1020566821163.

本文引用的文献

1
Emergence of childhood psychiatric disorders: a multivariate probit analysis.
Stat Med. 1998 Nov 15;17(21):2487-99. doi: 10.1002/(sici)1097-0258(19981115)17:21<2487::aid-sim937>3.0.co;2-2.
2
High-dimensional multivariate probit analysis.
Biometrics. 1996 Dec;52(4):1183-94.
3
Multi-variate probit analysis.
Biometrics. 1970 Sep;26(3):535-46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验