Xu Huiping, Craig Bruce A
Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762 (
Technometrics. 2010 Aug 1;52(2):340-348. doi: 10.1198/TECH.2010.09055.
Multivariate binary data arise in a variety of settings. In this paper, we propose a practical and efficient computational framework for maximum likelihood estimation of multivariate probit regression models. This approach uses the Monte Carlo EM (MCEM) algorithm, with parameter expansion to complete the M-step, to avoid the direct evaluation of the intractable multivariate normal orthant probabilities. The parameter expansion not only enables a closed-form solution in the M-step but also improves efficiency. Using the simulation studies, we compare the performance of our approach with the MCEM algorithms developed by Chib and Greenberg (1998) and Song and Lee (2005), as well as the iterative approach proposed by Li and Schafer (2008). Our approach is further illustrated using a real-world example.
多变量二元数据出现在各种场景中。在本文中,我们提出了一个实用且高效的计算框架,用于多变量概率单位回归模型的最大似然估计。该方法使用蒙特卡罗期望最大化(MCEM)算法,并通过参数扩展来完成M步,以避免直接计算难以处理的多变量正态象限概率。参数扩展不仅能在M步中得到闭式解,还能提高效率。通过模拟研究,我们将我们的方法与Chib和Greenberg(1998)以及Song和Lee(2005)开发的MCEM算法,以及Li和Schafer(2008)提出的迭代方法的性能进行了比较。我们通过一个实际例子进一步说明了我们的方法。