Univ. of Illinois, Dep. of Natural Resources and Environmental Sciences, W-503 Turner Hall, 1102 S. Goodwin Ave., Urbana, IL 61801, USA.
J Environ Qual. 2010 Sep-Oct;39(5):1657-67. doi: 10.2134/jeq2010.0115.
Riverine nitrate N in the Mississippi River leads to hypoxia in the Gulf of Mexico. Several recent modeling studies estimated major N inputs and suggested source areas that could be targeted for conservation programs. We conducted a similar analysis with more recent and extensive data that demonstrates the importance of hydrology in controlling the percentage of net N inputs (NNI) exported by rivers. The average fraction of annual riverine nitrate N export/NNI ranged from 0.05 for the lower Mississippi subbasin to 0.3 for the upper Mississippi River basin and as high as 1.4 (4.2 in a wet year) for the Embarras River watershed, a mostly tile-drained basin. Intensive corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] watersheds on Mollisols had low NNI values and when combined with riverine N losses suggest a net depletion of soil organic N. We used county-level data to develop a nonlinear model ofN inputs and landscape factors that were related to winter-spring riverine nitrate yields for 153 watersheds within the basin. We found that river runoff times fertilizer N input was the major predictive term, explaining 76% of the variation in the model. Fertilizer inputs were highly correlated with fraction of land area in row crops. Tile drainage explained 17% of the spatial variation in winter-spring nitrate yield, whereas human consumption of N (i.e., sewage effluent) accounted for 7%. Net N inputs were not a good predictor of riverine nitrate N yields, nor were other N balances. We used this model to predict the expected nitrate N yield from each county in the Mississippi River basin; the greatest nitrate N yields corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio. This analysis can be used to guide decisions about where efforts to reduce nitrate N losses can be most effectively targeted to improve local water quality and reduce export to the Gulf of Mexico.
密西西比河中的河流硝酸盐 N 导致墨西哥湾缺氧。最近的几项建模研究估计了主要的 N 输入量,并提出了可能成为保护计划目标的源区。我们使用更近期和更广泛的数据进行了类似的分析,这些数据表明水文学在控制河流净 N 输入(NNI)的出口百分比方面具有重要意义。河流硝酸盐 N 出口/NNI 的年平均分数范围从密西西比河下游亚流域的 0.05 到密西西比河上游流域的 0.3,以及高达 1.4(湿润年份为 4.2)的伊马布拉河流域,这是一个主要采用排水渠的流域。莫利索尔土壤上集约化的玉米(Zea mays L.)和大豆[ Glycine max(L.)Merr.]流域的 NNI 值较低,当与河流 N 损失结合时,表明土壤有机 N 出现净亏空。我们使用县级数据为流域内 153 个流域的冬季-春季河流硝酸盐产量开发了一个与 N 输入和景观因素相关的非线性模型。我们发现,河流径流量与肥料 N 输入的时间是模型中主要的预测因子,解释了模型中 76%的变化。肥料输入与条播作物的土地面积比例高度相关。排水渠解释了冬季-春季硝酸盐产量空间变化的 17%,而人类对 N 的消耗(即污水排放)占 7%。NNI 输入不是河流硝酸盐 N 产量的良好预测因子,其他 N 平衡也是如此。我们使用该模型预测密西西比河流域每个县的预期硝酸盐 N 产量;最大的硝酸盐 N 产量对应于从明尼苏达州西南部穿过爱荷华州、伊利诺伊州、印第安纳州和俄亥俄州的高度发达、排水渠密布的玉米带。这项分析可用于指导决策,以便在何处最有效地减少硝酸盐 N 损失,从而改善当地水质并减少对墨西哥湾的出口。