Pandit Aayush, Golden Heather E, Christensen Jay R, Lane Charles R, Husic Admin
Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS, USA.
Office of Research & Development, US Environmental Protection Agency, Cincinnati, OH, USA.
Water Resour Res. 2025 Aug 9;61(8):e2024WR039207. doi: 10.1029/2024WR039207.
Excess riverine nitrate causes downstream eutrophication, notably in the Gulf of Mexico where hypoxia is linked to nutrient-rich discharge from the Mississippi River Basin (MRB). We developed a long short-term memory (LSTM) model using high-frequency sensor data from across the conterminous US to predict daily nitrate concentrations, achieving strong temporal validation performance (median KGE = 0.60). Spatial validation-or prediction in unmonitored basins-yielded lower performance for nitrate concentration (median KGE = 0.18). Nonetheless, spatial validation was crucial in quantifying the impact of current data gaps and guiding the model's targeted application to the MRB where spatial validation performance was stronger (median KGE = 0.34). Modeling results for the MRB from 1980 to 2022 showed relatively low riverine nitrate export (19 ± 4% of surplus), indicating large-scale retention of surplus nitrate within the MRB. Interannual nitrate yields varied significantly, especially in Midwestern states like Iowa, where wet-year export fractions (42 ± 24%) far exceeded dry year export (6 ± 6%), suggesting increased hydrologic connectivity and remobilization of legacy nitrogen. Further evidence of legacy nitrate remobilization was noted in a subset of Midwestern basins where, on occasion, annual surplus export fractions exceeded 100%. Interpretable Shapley values identified key spatial drivers influencing mean nitrate concentrations-tile drainage, roadway density, wetland cover-and quantitative, non-linear thresholds in their influence, offering management targets. This study leverages machine learning and aquatic sensing to provide improved spatiotemporal predictions and insights into nitrate drivers, thresholds, and legacy impacts, offering valuable information for targeted nutrient management strategies in the MRB.
河流中过量的硝酸盐会导致下游富营养化,尤其是在墨西哥湾,那里的缺氧现象与密西西比河流域(MRB)富含营养物质的排放有关。我们利用来自美国本土的高频传感器数据开发了一个长短期记忆(LSTM)模型,以预测每日硝酸盐浓度,取得了较强的时间验证性能(中位数KGE = 0.60)。空间验证——即在未监测流域进行预测——对于硝酸盐浓度的性能较低(中位数KGE = 0.18)。尽管如此,空间验证对于量化当前数据缺口的影响以及指导模型在空间验证性能较强的MRB中的针对性应用至关重要(中位数KGE = 0.34)。1980年至2022年MRB的建模结果显示,河流硝酸盐输出相对较低(占盈余的19 ± 4%),表明MRB内大量盈余硝酸盐被截留。年际硝酸盐产量变化显著,特别是在爱荷华州等中西部州,丰水年的输出比例(42 ± 24%)远远超过干旱年的输出(6 ± 6%),这表明水文连通性增加以及遗留氮的再活化。在中西部部分流域还发现了遗留硝酸盐再活化的进一步证据,有时这些流域的年度盈余输出比例超过100%。可解释的夏普利值确定了影响平均硝酸盐浓度的关键空间驱动因素——瓷砖排水、道路密度、湿地覆盖——以及它们影响中的定量非线性阈值,提供了管理目标。本研究利用机器学习和水生传感技术,改进了硝酸盐驱动因素、阈值和遗留影响的时空预测与洞察,为MRB的针对性养分管理策略提供了有价值的信息。