Institute for Nonlinear Science (INLS), University of California San Diego (UCSD), La Jolla, CA, USA.
Eur J Neurosci. 2010 Dec;32(11):1930-9. doi: 10.1111/j.1460-9568.2010.07455.x. Epub 2010 Oct 29.
Throughout the brain, neurons encode information in fundamental units of spikes. Each spike represents the combined thresholding of synaptic inputs and intrinsic neuronal dynamics. Here, we address a basic question of spike train formation: how do perithreshold synaptic inputs perturb the output of a spiking neuron? We recorded from single entorhinal principal cells in vitro and drove them to spike steadily at ∼5 Hz (theta range) with direct current injection, then used a dynamic-clamp to superimpose strong excitatory conductance inputs at varying rates. Neurons spiked most reliably when the input rate matched the intrinsic neuronal firing rate. We also found a striking tendency of neurons to preserve their rates and coefficients of variation, independently of input rates. As mechanisms for this rate maintenance, we show that the efficacy of the conductance inputs varied with the relationship of input rate to neuronal firing rate, and with the arrival time of the input within the natural period. Using a novel method of spike classification, we developed a minimal Markov model that reproduced the measured statistics of the output spike trains and thus allowed us to identify and compare contributions to the rate maintenance and resonance. We suggest that the strength of rate maintenance may be used as a new categorization scheme for neuronal response and note that individual intrinsic spiking mechanisms may play a significant role in forming the rhythmic spike trains of activated neurons; in the entorhinal cortex, individual pacemakers may dominate production of the regional theta rhythm.
在整个大脑中,神经元以基本的尖峰单位来编码信息。每个尖峰代表突触输入和内在神经元动力学的综合阈值。在这里,我们解决了尖峰序列形成的一个基本问题:突触输入如何在阈下扰动放电神经元的输出?我们在体外记录单个内嗅皮层主细胞,并通过直流注入将其稳定地驱动至约 5 Hz(θ 范围),然后使用动态钳位以不同的速率叠加强兴奋性电导输入。当输入率与内在神经元的放电率匹配时,神经元的尖峰最可靠。我们还发现神经元存在一种惊人的趋势,即独立于输入率来保持其频率和变异系数。作为这种维持速率的机制,我们表明,电导输入的效能随输入率与神经元放电率的关系以及输入在自然周期内的到达时间而变化。我们使用一种新的尖峰分类方法,开发了一个最小马尔可夫模型,该模型再现了输出尖峰序列的测量统计数据,从而使我们能够识别和比较维持速率和共振的贡献。我们认为,维持速率的强度可用作神经元反应的新分类方案,并且注意到单个内在放电机制可能在形成激活神经元的节律性尖峰序列中起重要作用;在内嗅皮层中,单个起搏器可能主导区域θ节律的产生。