Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
Biophys J. 2010 Nov 3;99(9):2906-16. doi: 10.1016/j.bpj.2010.08.048.
We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law (Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245-264). Our modeling enforces the global area-incompressibility of the spectrin skeleton (being enclosed beneath the lipid bilayer in the erythrocyte membrane) via a nonstiff, and thus efficient, adaptive prestress procedure which accounts for the (locally) isotropic stress imposed by the lipid bilayer on the cytoskeleton. In addition, we investigate the dynamics of healthy human erythrocytes in strong shear flows with capillary number Ca =O(1) and small-to-moderate viscosity ratios 0.001 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 mPa s) and shear flow rates (0.02-440 s(-1)), and match those used in ektacytometry systems. Our computational results on the cell deformability and tank-treading frequency are compared with ektacytometry findings. The tank-treading period is shown to be inversely proportional to the shear rate and to increase linearly with the ratio of the cytoplasm viscosity to that of the suspending medium. Our modeling also predicts that the cytoskeleton undergoes measurable local area dilatation and compression during the tank-treading of the cells.
我们开发了一种基于细胞骨架的计算效率高的红细胞连续体算法。细胞骨架被建模为具有可比剪切和面积扩张阻力的二维弹性固体,遵循材料定律(Skalak,R.,A. Tozeren,R. P. Zarda 和 S. Chien. 1973. 红细胞膜的应变能函数。生物物理学杂志 13:245-264)。我们的模型通过非刚性且高效的自适应预应力程序来强制 spectrin 骨架的全局面积不可压缩性(位于红细胞膜的脂质双层下方),该程序考虑了脂质双层对细胞骨架施加的(局部)各向同性应力。此外,我们研究了在毛细管数 Ca = O(1)和小到中等粘度比 0.001 ≤ λ ≤ 1.5 的强剪切流中健康人红细胞的动力学。这些条件对应于广泛的周围介质粘度(4-600 mPa s)和剪切流率(0.02-440 s(-1)),并与 ektacytometry 系统中使用的条件相匹配。我们关于细胞变形性和坦克转向频率的计算结果与 ektacytometry 的发现进行了比较。坦克转向周期与剪切率成反比,并与细胞质粘度与悬浮介质粘度的比值线性增加。我们的建模还预测,在细胞的坦克转向过程中,细胞骨架会经历可测量的局部面积扩张和压缩。