Suppr超能文献

基于非刚性细胞骨架的连续介质计算模型研究强剪切流中红细胞的履带式运动。

Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.

出版信息

Biophys J. 2010 Nov 3;99(9):2906-16. doi: 10.1016/j.bpj.2010.08.048.

Abstract

We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law (Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245-264). Our modeling enforces the global area-incompressibility of the spectrin skeleton (being enclosed beneath the lipid bilayer in the erythrocyte membrane) via a nonstiff, and thus efficient, adaptive prestress procedure which accounts for the (locally) isotropic stress imposed by the lipid bilayer on the cytoskeleton. In addition, we investigate the dynamics of healthy human erythrocytes in strong shear flows with capillary number Ca =O(1) and small-to-moderate viscosity ratios 0.001 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4-600 mPa s) and shear flow rates (0.02-440 s(-1)), and match those used in ektacytometry systems. Our computational results on the cell deformability and tank-treading frequency are compared with ektacytometry findings. The tank-treading period is shown to be inversely proportional to the shear rate and to increase linearly with the ratio of the cytoplasm viscosity to that of the suspending medium. Our modeling also predicts that the cytoskeleton undergoes measurable local area dilatation and compression during the tank-treading of the cells.

摘要

我们开发了一种基于细胞骨架的计算效率高的红细胞连续体算法。细胞骨架被建模为具有可比剪切和面积扩张阻力的二维弹性固体,遵循材料定律(Skalak,R.,A. Tozeren,R. P. Zarda 和 S. Chien. 1973. 红细胞膜的应变能函数。生物物理学杂志 13:245-264)。我们的模型通过非刚性且高效的自适应预应力程序来强制 spectrin 骨架的全局面积不可压缩性(位于红细胞膜的脂质双层下方),该程序考虑了脂质双层对细胞骨架施加的(局部)各向同性应力。此外,我们研究了在毛细管数 Ca = O(1)和小到中等粘度比 0.001 ≤ λ ≤ 1.5 的强剪切流中健康人红细胞的动力学。这些条件对应于广泛的周围介质粘度(4-600 mPa s)和剪切流率(0.02-440 s(-1)),并与 ektacytometry 系统中使用的条件相匹配。我们关于细胞变形性和坦克转向频率的计算结果与 ektacytometry 的发现进行了比较。坦克转向周期与剪切率成反比,并与细胞质粘度与悬浮介质粘度的比值线性增加。我们的建模还预测,在细胞的坦克转向过程中,细胞骨架会经历可测量的局部面积扩张和压缩。

相似文献

2
Tank-treading of swollen erythrocytes in shear flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021922. doi: 10.1103/PhysRevE.85.021922. Epub 2012 Feb 27.
3
Oscillatory tank-treading motion of erythrocytes in shear flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011913. doi: 10.1103/PhysRevE.84.011913. Epub 2011 Jul 18.
6
Tank-treading and tumbling frequencies of capsules and red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046305. doi: 10.1103/PhysRevE.83.046305. Epub 2011 Apr 7.
7
Dynamics of a single red blood cell in simple shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042710. doi: 10.1103/PhysRevE.92.042710. Epub 2015 Oct 20.
9
Full dynamics of a red blood cell in shear flow.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20808-13. doi: 10.1073/pnas.1210236109. Epub 2012 Dec 3.
10
Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
Cytometry A. 2011 Nov;79(11):946-51. doi: 10.1002/cyto.a.21126. Epub 2011 Aug 30.

引用本文的文献

2
Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology.
Biophys J. 2022 Sep 20;121(18):3393-3410. doi: 10.1016/j.bpj.2022.08.016. Epub 2022 Aug 18.
3
Red blood cell shape transitions and dynamics in time-dependent capillary flows.
Biophys J. 2022 Jan 4;121(1):23-36. doi: 10.1016/j.bpj.2021.12.009. Epub 2021 Dec 9.
4
Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13289-13294. doi: 10.1073/pnas.1608074113. Epub 2016 Nov 9.
5
Transient dynamics of an elastic capsule in a microfluidic constriction.
Soft Matter. 2013 Oct 7;9(37). doi: 10.1039/C3SM51516H.
6
Lipid bilayer and cytoskeletal interactions in a red blood cell.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13356-61. doi: 10.1073/pnas.1311827110. Epub 2013 Jul 29.
7
Deformation of an elastic capsule in a rectangular microfluidic channel.
Soft Matter. 2013;9(16):4284-4296. doi: 10.1039/C3SM27683J.
9
Full dynamics of a red blood cell in shear flow.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20808-13. doi: 10.1073/pnas.1210236109. Epub 2012 Dec 3.
10
Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041917. doi: 10.1103/PhysRevE.85.041917. Epub 2012 Apr 23.

本文引用的文献

1
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Biophys J. 2010 May 19;98(10):2215-25. doi: 10.1016/j.bpj.2010.02.002.
2
Spindles, cusps, and bifurcation for capsules in Stokes flow.
Phys Rev Lett. 2008 Nov 14;101(20):208102. doi: 10.1103/PhysRevLett.101.208102. Epub 2008 Nov 12.
3
Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium.
Biophys J. 2007 Oct 1;93(7):2553-61. doi: 10.1529/biophysj.107.104505. Epub 2007 Jun 1.
4
Swinging of red blood cells under shear flow.
Phys Rev Lett. 2007 May 4;98(18):188302. doi: 10.1103/PhysRevLett.98.188302. Epub 2007 Apr 30.
5
Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition.
Phys Rev Lett. 2007 Feb 16;98(7):078301. doi: 10.1103/PhysRevLett.98.078301. Epub 2007 Feb 13.
6
Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
Biophys J. 2005 May;88(5):3707-19. doi: 10.1529/biophysj.104.047332. Epub 2005 Mar 4.
7
Shape memory of human red blood cells.
Biophys J. 2004 May;86(5):3304-13. doi: 10.1016/S0006-3495(04)74378-7.
8
Numerical simulation of the flow-induced deformation of red blood cells.
Ann Biomed Eng. 2003 Nov;31(10):1194-205. doi: 10.1114/1.1617985.
9
Blood rheology and hemodynamics.
Semin Thromb Hemost. 2003 Oct;29(5):435-50. doi: 10.1055/s-2003-44551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验