Suppr超能文献

具有精确力学、流变学和动力学特性的多尺度红细胞模型。

A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

机构信息

Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA.

出版信息

Biophys J. 2010 May 19;98(10):2215-25. doi: 10.1016/j.bpj.2010.02.002.

Abstract

Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.

摘要

红细胞(RBCs)具有高度可变形的粘弹性膜,表现出复杂的流变响应和丰富的流动行为,这是由特殊的弹性和弯曲特性以及外部/内部流体和膜粘度决定的。我们提出了一个多尺度 RBC 模型,该模型能够预测 RBC 的力学、流变学和动力学,与实验结果一致。基于分析理论,所建模的膜特性可以与实验中建立的 RBC 宏观特性唯一相关,而无需调整任何参数。红细胞的线性和非线性弹性变形与光镊实验中获得的变形相匹配。膜的流变特性与光学磁扭转细胞仪、膜热波动和细胞恢复后的蠕变实验结果进行了比较。对 RBC 在剪切和泊肃叶流中的动力学进行了实验和理论预测的检验,并讨论了后者的适用性。我们的研究结果清楚地表明,对于膜,纯粹的弹性模型不能准确地表示 RBC 的流变特性及其动力学,因此需要对粘弹性膜进行准确的建模。

相似文献

1
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Biophys J. 2010 May 19;98(10):2215-25. doi: 10.1016/j.bpj.2010.02.002.
2
Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4266-9. doi: 10.1109/IEMBS.2009.5334585.
3
Multiscale modeling of red blood cell mechanics and blood flow in malaria.
PLoS Comput Biol. 2011 Dec;7(12):e1002270. doi: 10.1371/journal.pcbi.1002270. Epub 2011 Dec 1.
4
Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
Microvasc Res. 2011 Sep;82(2):163-70. doi: 10.1016/j.mvr.2011.05.006. Epub 2011 May 27.
5
A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
Biomech Model Mechanobiol. 2011 Jul;10(4):445-59. doi: 10.1007/s10237-010-0246-2. Epub 2010 Aug 20.
7
Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13289-13294. doi: 10.1073/pnas.1608074113. Epub 2016 Nov 9.
8
Elastic energy of the discocyte-stomatocyte transformation.
Biochim Biophys Acta. 2014 Mar;1838(3):950-6. doi: 10.1016/j.bbamem.2013.10.020. Epub 2013 Nov 2.
9
Measurement of red blood cell mechanics during morphological changes.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6731-6. doi: 10.1073/pnas.0909533107. Epub 2010 Mar 29.
10
Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
J Biomech. 2007;40(9):2088-95. doi: 10.1016/j.jbiomech.2006.10.004. Epub 2006 Dec 22.

引用本文的文献

2
Dissipative Particle Dynamics Models of Encapsulated Microbubbles and Nanoscale Gas Vesicles for Biomedical Ultrasound Simulations.
ACS Appl Nano Mater. 2025 Aug 4;8(32):16053-16070. doi: 10.1021/acsanm.5c02783. eCollection 2025 Aug 15.
3
Shape transitions of red blood cell under oscillatory flows in microchannels.
AIP Adv. 2025 Aug 11;15(8):085010. doi: 10.1063/5.0278720. eCollection 2025 Aug.
4
Hyperelasticity of blood clots: Bridging the gap between microscopic and continuum scales.
J Mech Phys Solids. 2024 Sep;190. doi: 10.1016/j.jmps.2024.105750. Epub 2024 Jun 20.
5
Multi-scale simulation of red blood cell trauma in large-scale high-shear flows after Norwood operation.
Comput Methods Programs Biomed. 2025 Nov;271:108947. doi: 10.1016/j.cmpb.2025.108947. Epub 2025 Jul 19.
6
Run-and-tumble dynamics of is governed by its mechanical properties.
J R Soc Interface. 2025 Jun;22(227):20250035. doi: 10.1098/rsif.2025.0035. Epub 2025 Jun 18.
7
Modelling motility of Trypanosoma brucei.
PLoS Comput Biol. 2025 May 21;21(5):e1013111. doi: 10.1371/journal.pcbi.1013111. eCollection 2025 May.
8
Aggregation and disaggregation of red blood cells: Depletion versus bridging.
Biophys J. 2025 Apr 15;124(8):1285-1297. doi: 10.1016/j.bpj.2025.03.007. Epub 2025 Mar 13.
10
In silico biophysics and rheology of blood and red blood cells in Gaucher Disease.
bioRxiv. 2024 Dec 12:2024.12.10.627687. doi: 10.1101/2024.12.10.627687.

本文引用的文献

1
Large deformation of red blood cell ghosts in a simple shear flow.
Phys Fluids (1994). 1998 Aug;10(8):1834-1845. doi: 10.1063/1.869703. Epub 1998 Jul 1.
2
Microrheology of red blood cell membranes using dynamic scattering microscopy.
Opt Express. 2007 Dec 10;15(25):17001-9. doi: 10.1364/oe.15.017001.
3
Accurate coarse-grained modeling of red blood cells.
Phys Rev Lett. 2008 Sep 12;101(11):118105. doi: 10.1103/PhysRevLett.101.118105.
4
Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13730-5. doi: 10.1073/pnas.0806100105. Epub 2008 Sep 4.
5
Cytoskeleton mediated effective elastic properties of model red blood cell membranes.
J Chem Phys. 2008 Aug 14;129(6):065101. doi: 10.1063/1.2958268.
6
The nonlinear mechanical response of the red blood cell.
Phys Biol. 2008 Aug 13;5(3):036007. doi: 10.1088/1478-3975/5/3/036007.
7
Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence.
Biophys J. 2008 May 15;94(10):4134-44. doi: 10.1529/biophysj.107.117952. Epub 2008 Jan 30.
8
Coherence properties of red blood cell membrane motions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031902. doi: 10.1103/PhysRevE.76.031902. Epub 2007 Sep 7.
9
Modeling the flow of dense suspensions of deformable particles in three dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066707. doi: 10.1103/PhysRevE.75.066707. Epub 2007 Jun 27.
10
Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium.
Biophys J. 2007 Oct 1;93(7):2553-61. doi: 10.1529/biophysj.107.104505. Epub 2007 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验