Department of Computer Engineering, Cankaya University, Ankara, Turkey.
J Med Syst. 2012 Jun;36(3):1485-90. doi: 10.1007/s10916-010-9609-6. Epub 2010 Nov 3.
We introduce a method for extracting hidden patterns seen in rheumatic diseases by using articles from the widely used biomedical database MEDLINE. Rheumatic diseases affect hundreds of millions of people worldwide and lead to substantial loss of functioning and mobility. Diagnosing rheumatic diseases can be difficult because some symptoms are common to many of them. We use Facta system as a biomedical text mining tool for finding symptoms and then create a dataset with the frequencies of symptoms for each disease and apply hierarchical clustering analysis to find similarities between diseases. Clustering analysis yields four distinct types or groups of rheumatic diseases. Although our results cannot remove all the uncertainty for the diagnosis of rheumatic diseases, we believe they can contribute to the diagnosis of rheumatic diseases to a certain extent. We hope that some similarities exposed can provide additional information at the stage of decision-making.
我们介绍了一种通过使用广泛使用的生物医学数据库 MEDLINE 中的文章来提取风湿性疾病中隐藏模式的方法。风湿性疾病影响着全球数以亿计的人,并导致功能和活动能力的大量丧失。由于一些症状与许多风湿性疾病都常见,因此诊断风湿性疾病可能具有挑战性。我们使用 Facta 系统作为生物医学文本挖掘工具来查找症状,然后创建一个包含每种疾病症状频率的数据集,并应用层次聚类分析来发现疾病之间的相似性。聚类分析产生了四种不同类型或组的风湿性疾病。尽管我们的结果不能消除风湿性疾病诊断的所有不确定性,但我们相信它们可以在一定程度上有助于风湿性疾病的诊断。我们希望暴露的一些相似性可以在决策阶段提供额外的信息。