Suppr超能文献

从 MEDLINE 中挖掘骨质疏松症的治疗方法。

Mining MEDLINE for the treatment of osteoporosis.

机构信息

Department of Computer Engineering, Cankaya University, Ankara, Turkey.

出版信息

J Med Syst. 2012 Aug;36(4):2339-47. doi: 10.1007/s10916-011-9701-6. Epub 2011 Apr 15.

Abstract

In this paper, we consider the importance of osteoporosis disease in terms of medical research and pharmaceutical industry and we introduce a knowledge discovery approach regarding the treatment of osteoporosis from a historical perspective. Osteoporosis is a systemic skeletal disease in which osteoporotic fractures are associated with substantial morbidity and mortality and impaired quality of life. Osteoporosis has also higher costs, for example, longer hospital stays than many other diseases such as diabetes and heart attack and it is an attractive market for pharmaceutical companies. We use a freely available biomedical search engine leveraging text-mining technology to extract the drug names used in the treatment of osteoporosis from MEDLINE articles. We conclude that alendronate (Fosamax) and raloxifene (Evista) have the highest number of articles in MEDLINE and seem the dominating drugs for the treatment of osteoporosis in the last decade.

摘要

在本文中,我们从医学研究和制药行业的角度考虑骨质疏松症的重要性,并从历史角度介绍一种关于骨质疏松症治疗的知识发现方法。骨质疏松症是一种全身性骨骼疾病,骨质疏松性骨折与大量发病率和死亡率以及生活质量受损有关。骨质疏松症的成本也更高,例如,住院时间比糖尿病和心脏病等许多其他疾病更长,因此它是制药公司的一个有吸引力的市场。我们使用一个免费提供的生物医学搜索引擎,利用文本挖掘技术从 MEDLINE 文章中提取治疗骨质疏松症使用的药物名称。我们的结论是,阿伦膦酸盐(福善美)和雷洛昔芬(艾丽)在 MEDLINE 中有最多的文章,并且在过去十年中似乎是治疗骨质疏松症的主导药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验