Suppr超能文献

临床实践中的数据、大数据及机器学习基础

The basics of data, big data, and machine learning in clinical practice.

作者信息

Soriano-Valdez David, Pelaez-Ballestas Ingris, Manrique de Lara Amaranta, Gastelum-Strozzi Alfonso

机构信息

Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico.

Rheumatology Unit, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico.

出版信息

Clin Rheumatol. 2021 Jan;40(1):11-23. doi: 10.1007/s10067-020-05196-z. Epub 2020 Jun 5.

Abstract

Health informatics and biomedical computing have introduced the use of computer methods to analyze clinical information and provide tools to assist clinicians during the diagnosis and treatment of diverse clinical conditions. With the amount of information that can be obtained in the healthcare setting, new methods to acquire, organize, and analyze the data are being developed each day, including new applications in the world of big data and machine learning. In this review, first we present the most basic concepts in data science, including the structural hierarchy of information and how it is managed. A section is dedicated to discussing topics relevant to the acquisition of data, importantly the availability and use of online resources such as survey software and cloud computing services. Along with digital datasets, these tools make it possible to create more diverse models and facilitate collaboration. After, we describe concepts and techniques in machine learning used to process and analyze health data, especially those most widely applied in rheumatology. Overall, the objective of this review is to aid in the comprehension of how data science is used in health, with a special emphasis on the relevance to the field of rheumatology. It provides clinicians with basic tools on how to approach and understand new trends in health informatics analysis currently being used in rheumatology practice. If clinicians understand the potential use and limitations of health informatics, this will facilitate interdisciplinary conversations and continued projects relating to data, big data, and machine learning.

摘要

健康信息学和生物医学计算引入了计算机方法来分析临床信息,并提供工具以协助临床医生诊断和治疗各种临床病症。鉴于在医疗环境中可获取的信息量,每天都在开发获取、组织和分析数据的新方法,包括大数据和机器学习领域的新应用。在本综述中,首先我们介绍数据科学中最基本的概念,包括信息的结构层次及其管理方式。有一部分专门讨论与数据获取相关的主题,重要的是在线资源(如调查软件和云计算服务)的可用性和使用。连同数字数据集一起,这些工具使得创建更多样化的模型并促进协作成为可能。之后,我们描述用于处理和分析健康数据的机器学习中的概念和技术,特别是那些在风湿病学中应用最广泛的技术。总体而言,本综述的目的是帮助理解数据科学在健康领域的应用方式,特别强调其与风湿病学领域的相关性。它为临床医生提供了基本工具,以了解如何看待和理解目前在风湿病学实践中使用的健康信息学分析的新趋势。如果临床医生了解健康信息学的潜在用途和局限性,这将促进与数据、大数据和机器学习相关的跨学科交流及持续项目。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验