Suppr超能文献

目标切换在弯曲的人手臂运动中是通过改变一个单一的控制参数来预测的。

Target switching in curved human arm movements is predicted by changing a single control parameter.

机构信息

University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Exp Brain Res. 2011 Jan;208(1):73-87. doi: 10.1007/s00221-010-2461-6. Epub 2010 Nov 3.

Abstract

Straight-line movements have been studied extensively in the human motor-control literature, but little is known about how to generate curved movements and how to adjust them in a dynamic environment. The present work studied, for the first time to my knowledge, how humans adjust curved hand movements to a target that switches location. Subjects (n = 8) sat in front of a drawing tablet and looked at a screen. They moved a cursor on a curved trajectory (spiral or oval shaped) toward a goal point. In half of the trials, this goal switched 200 ms after movement onset to either one of two alternative positions, and subjects smoothly adjusted their movements to the new goal. To explain this adjustment, we compared three computational models: a superposition of curved and minimum-jerk movements (Flash and Henis in J Cogn Neurosci 3(3):220-230, 1991), Vector Planning (Gordon et al. in Exp Brain Res 99(1):97-111, 1994) adapted to curved movements (Rescale), and a nonlinear dynamical system, which could generate arbitrarily curved smooth movements and had a point attractor at the goal. For each model, we predicted the trajectory adjustment to the target switch by changing only the goal position in the model. As result, the dynamical model could explain the observed switch behavior significantly better than the two alternative models (spiral: P = 0.0002 vs. Flash, P = 0.002 vs. Rescale; oval: P = 0.04 vs. Flash; P values obtained from Wilcoxon test on R (2) values). We conclude that generalizing arbitrary hand trajectories to new targets may be explained by switching a single control command, without the need to re-plan or re-optimize the whole movement or superimpose movements.

摘要

直线运动在人类运动控制文献中得到了广泛研究,但对于如何产生曲线运动以及如何在动态环境中调整这些运动知之甚少。本研究首次探讨了人类如何调整曲线手部运动以适应目标位置的变化。被试者(n=8)坐在绘图板前,看着屏幕。他们在弯曲的轨迹(螺旋形或椭圆形)上向目标点移动光标。在一半的试验中,这个目标在运动开始后 200 毫秒会切换到两个替代位置之一,而被试者会平滑地调整他们的运动以适应新的目标。为了解释这种调整,我们比较了三个计算模型:弯曲和最小冲击运动的叠加(Flash 和 Henis 在 J Cogn Neurosci 3(3):220-230, 1991)、向量规划(Gordon 等人在 Exp Brain Res 99(1):97-111, 1994)适应于曲线运动(Rescale)和一个非线性动力系统,它可以产生任意弯曲的平滑运动,并且在目标处有一个吸引点。对于每个模型,我们通过仅在模型中改变目标位置来预测对目标切换的轨迹调整。结果,动力模型可以显著更好地解释观察到的切换行为,而不是两个替代模型(螺旋形:P=0.0002 比 Flash,P=0.002 比 Rescale;椭圆形:P=0.04 比 Flash;P 值通过对 R(2)值的 Wilcoxon 检验获得)。我们得出结论,将任意手部轨迹推广到新的目标可以通过切换单个控制命令来解释,而无需重新规划或重新优化整个运动或叠加运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验