Suppr超能文献

高密度脑电图揭示的在线运动校正处理的时空动态

Spatiotemporal dynamics of online motor correction processing revealed by high-density electroencephalography.

作者信息

Dipietro Laura, Poizner Howard, Krebs Hermano I

机构信息

Massachusetts Institute of Technology.

出版信息

J Cogn Neurosci. 2014 Sep;26(9):1966-80. doi: 10.1162/jocn_a_00593. Epub 2014 Feb 24.

Abstract

The ability to control online motor corrections is key to dealing with unexpected changes arising in the environment with which we interact. How the CNS controls online motor corrections is poorly understood, but evidence has accumulated in favor of a submovement-based model in which apparently continuous movement is segmented into distinct submovements. Although most studies have focused on submovements' kinematic features, direct links with the underlying neural dynamics have not been extensively explored. This study sought to identify an electroencephalographic signature of submovements. We elicited kinematic submovements using a double-step displacement paradigm. Participants moved their wrist toward a target whose direction could shift mid-movement with a 50% probability. Movement kinematics and cortical activity were concurrently recorded with a low-friction robotic device and high-density electroencephalography. Analysis of spatiotemporal dynamics of brain activation and its correlation with movement kinematics showed that the production of each kinematic submovement was accompanied by (1) stereotyped topographic scalp maps and (2) frontoparietal ERPs time-locked to submovements. Positive ERP peaks from frontocentral areas contralateral to the moving wrist preceded kinematic submovement peaks by 220-250 msec and were followed by positive ERP peaks from contralateral parietal areas (140-250 msec latency, 0-80 msec before submovement peaks). Moreover, individual subject variability in the latency of frontoparietal ERP components following the target shift significantly predicted variability in the latency of the corrective submovement. Our results are in concordance with evidence for the intermittent nature of continuous movement and elucidate the timing and role of frontoparietal activations in the generation and control of corrective submovements.

摘要

控制在线运动校正的能力是应对我们所交互环境中出现的意外变化的关键。中枢神经系统如何控制在线运动校正目前尚不清楚,但已有证据支持基于子运动的模型,即看似连续的运动被分割为不同的子运动。尽管大多数研究都集中在子运动的运动学特征上,但与潜在神经动力学的直接联系尚未得到广泛探索。本研究旨在识别子运动的脑电图特征。我们使用双步位移范式诱发运动学子运动。参与者将手腕移向一个目标,该目标的方向在运动过程中有50%的概率会发生偏移。使用低摩擦机器人设备和高密度脑电图同时记录运动学和皮层活动。对大脑激活的时空动态及其与运动学的相关性分析表明,每个运动学子运动的产生伴随着(1)刻板的头皮地形图和(2)与子运动时间锁定的额顶区事件相关电位。与运动手腕对侧的额中央区的正性事件相关电位峰值比运动学子运动峰值提前220 - 250毫秒出现,随后是对侧顶叶区的正性事件相关电位峰值(潜伏期140 - 250毫秒,在子运动峰值前0 - 80毫秒)。此外,目标偏移后额顶叶事件相关电位成分潜伏期的个体差异显著预测了校正子运动潜伏期的差异。我们的结果与连续运动的间歇性本质的证据一致,并阐明了额顶叶激活在校正子运动产生和控制中的时间和作用。

相似文献

1
Spatiotemporal dynamics of online motor correction processing revealed by high-density electroencephalography.
J Cogn Neurosci. 2014 Sep;26(9):1966-80. doi: 10.1162/jocn_a_00593. Epub 2014 Feb 24.
2
EEG correlates of submovements.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7429-32. doi: 10.1109/IEMBS.2011.6091730.
3
Action Monitoring Cortical Activity Coupled to Submovements.
eNeuro. 2017 Oct 24;4(5). doi: 10.1523/ENEURO.0241-17.2017. eCollection 2017 Sep-Oct.
4
Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
J Neurophysiol. 2024 Aug 1;132(2):433-445. doi: 10.1152/jn.00269.2023. Epub 2024 Jul 10.
5
Origins of submovements in movements of elderly adults.
J Neuroeng Rehabil. 2008 Nov 13;5:28. doi: 10.1186/1743-0003-5-28.
6
The use of overlapping submovements in the control of rapid hand movements.
Exp Brain Res. 2002 Jun;144(3):351-64. doi: 10.1007/s00221-002-1060-6. Epub 2002 Apr 13.
7
Manual interception of moving targets. II. On-line control of overlapping submovements.
Exp Brain Res. 1997 Oct;116(3):421-33. doi: 10.1007/pl00005770.
8
Electroencephalographic correlates of target and outcome errors.
Exp Brain Res. 2008 Oct;190(4):401-11. doi: 10.1007/s00221-008-1482-x. Epub 2008 Jul 16.
9
Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.
Behav Brain Res. 2014 Nov 1;274:95-107. doi: 10.1016/j.bbr.2014.07.054. Epub 2014 Aug 6.
10
The role of different submovement types during pointing to a target.
Exp Brain Res. 2007 Jan;176(1):132-49. doi: 10.1007/s00221-006-0603-7. Epub 2006 Jul 7.

引用本文的文献

1
Effect of Visual Feedback on Behavioral Control and Functional Activity During Bilateral Hand Movement.
Brain Topogr. 2023 Jul;36(4):517-534. doi: 10.1007/s10548-023-00969-6. Epub 2023 May 17.
2
Resting-state EEG topographies: Reliable and sensitive signatures of unilateral spatial neglect.
Neuroimage Clin. 2020;26:102237. doi: 10.1016/j.nicl.2020.102237. Epub 2020 Mar 5.
3
Action Monitoring Cortical Activity Coupled to Submovements.
eNeuro. 2017 Oct 24;4(5). doi: 10.1523/ENEURO.0241-17.2017. eCollection 2017 Sep-Oct.
4
EEG topographies provide subject-specific correlates of motor control.
Sci Rep. 2017 Oct 16;7(1):13229. doi: 10.1038/s41598-017-13482-1.
5
Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.
Neuroimage. 2017 Jan 1;144(Pt A):164-173. doi: 10.1016/j.neuroimage.2016.10.008. Epub 2016 Oct 14.
6
Corrective jitter motion shows similar individual frequencies for the arm and the finger.
Exp Brain Res. 2015 Apr;233(4):1307-20. doi: 10.1007/s00221-015-4204-1. Epub 2015 Jan 29.
7
Characterizing and predicting submovements during human three-dimensional arm reaches.
PLoS One. 2014 Jul 24;9(7):e103387. doi: 10.1371/journal.pone.0103387. eCollection 2014.

本文引用的文献

1
Arm trajectory modifications during reaching towards visual targets.
J Cogn Neurosci. 1991 Summer;3(3):220-30. doi: 10.1162/jocn.1991.3.3.220.
2
A comparative analysis of speed profile models for wrist pointing movements.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):756-66. doi: 10.1109/TNSRE.2012.2231943. Epub 2012 Dec 10.
3
Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17075-80. doi: 10.1073/pnas.1215092109. Epub 2012 Oct 1.
4
Beta- and gamma-range human lower limb corticomuscular coherence.
Front Hum Neurosci. 2012 Sep 11;6:258. doi: 10.3389/fnhum.2012.00258. eCollection 2012.
5
Activity in motor-sensory projections reveals distributed coding in somatosensation.
Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.
6
Impairment of online control of hand and eye movements in a monkey model of optic ataxia.
Cereb Cortex. 2013 Nov;23(11):2644-56. doi: 10.1093/cercor/bhs250. Epub 2012 Aug 23.
7
Reprogramming movements: extraction of motor intentions from cortical ensemble activity when movement goals change.
Front Neuroeng. 2012 Jul 18;5:16. doi: 10.3389/fneng.2012.00016. eCollection 2012.
8
An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions.
J Neuroeng Rehabil. 2012 Jun 9;9:35. doi: 10.1186/1743-0003-9-35.
9
Superposition and modulation of muscle synergies for reaching in response to a change in target location.
J Neurophysiol. 2011 Dec;106(6):2796-812. doi: 10.1152/jn.00675.2010. Epub 2011 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验