Suppr超能文献

最小二乘支持向量回归的近似置信区间和预测区间。

Approximate confidence and prediction intervals for least squares support vector regression.

作者信息

De Brabanter Kris, De Brabanter Jos, Suykens Johan A K, De Moor Bart

机构信息

Department of Electrical Engineering, Research Division SCD, Katholieke Universiteit Leuven, Leuven 3001, Belgium.

出版信息

IEEE Trans Neural Netw. 2011 Jan;22(1):110-20. doi: 10.1109/TNN.2010.2087769. Epub 2010 Nov 1.

Abstract

Bias-corrected approximate 100(1-α)% pointwise and simultaneous confidence and prediction intervals for least squares support vector machines are proposed. A simple way of determining the bias without estimating higher order derivatives is formulated. A variance estimator is developed that works well in the homoscedastic and heteroscedastic case. In order to produce simultaneous confidence intervals, a simple Šidák correction and a more involved correction (based on upcrossing theory) are used. The obtained confidence intervals are compared to a state-of-the-art bootstrap-based method. Simulations show that the proposed method obtains similar intervals compared to the bootstrap at a lower computational cost.

摘要

提出了用于最小二乘支持向量机的偏差校正近似100(1-α)%逐点及同时置信区间和预测区间。制定了一种无需估计高阶导数来确定偏差的简单方法。开发了一种在同方差和异方差情况下均表现良好的方差估计器。为了生成同时置信区间,使用了一种简单的Šidák校正和一种更复杂的校正(基于上穿理论)。将获得的置信区间与一种基于自举法的先进方法进行比较。模拟结果表明,所提出的方法以较低的计算成本获得了与自举法相似的区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验