Suppr超能文献

基于聚类样本熵的传导特征选择在天气预报温度预测中的应用

Transductive Feature Selection Using Clustering-Based Sample Entropy for Temperature Prediction in Weather Forecasting.

作者信息

Karevan Zahra, Suykens Johan A K

机构信息

ESAT-STADIUS (Department of Electrical Engineering-Stadius Centre for Dynamical Systems, Signal Processing and Data Analytics), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.

出版信息

Entropy (Basel). 2018 Apr 10;20(4):264. doi: 10.3390/e20040264.

Abstract

Entropy measures have been a major interest of researchers to measure the information content of a dynamical system. One of the well-known methodologies is sample entropy, which is a model-free approach and can be deployed to measure the information transfer in time series. Sample entropy is based on the conditional entropy where a major concern is the number of past delays in the conditional term. In this study, we deploy a lag-specific conditional entropy to identify the informative past values. Moreover, considering the seasonality structure of data, we propose a clustering-based sample entropy to exploit the temporal information. Clustering-based sample entropy is based on the sample entropy definition while considering the clustering information of the training data and the membership of the test point to the clusters. In this study, we utilize the proposed method for transductive feature selection in black-box weather forecasting and conduct the experiments on minimum and maximum temperature prediction in Brussels for 1-6 days ahead. The results reveal that considering the local structure of the data can improve the feature selection performance. In addition, despite the large reduction in the number of features, the performance is competitive with the case of using all features.

摘要

熵度量一直是研究人员测量动态系统信息内容的主要兴趣所在。其中一种广为人知的方法是样本熵,它是一种无模型方法,可用于测量时间序列中的信息传递。样本熵基于条件熵,其中一个主要关注点是条件项中过去延迟的数量。在本研究中,我们采用特定滞后的条件熵来识别信息丰富的过去值。此外,考虑到数据的季节性结构,我们提出了一种基于聚类的样本熵来利用时间信息。基于聚类的样本熵基于样本熵的定义,同时考虑训练数据的聚类信息以及测试点属于聚类的隶属度。在本研究中,我们将所提出的方法用于黑箱天气预报中的转导特征选择,并对布鲁塞尔未来1 - 6天的最低和最高温度预测进行实验。结果表明,考虑数据的局部结构可以提高特征选择性能。此外,尽管特征数量大幅减少,但性能与使用所有特征的情况具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验