Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Avda A Navarro 3051, Piso 2, Montevideo 11600, Uruguay.
J Biol Chem. 2011 Feb 18;286(7):4959-67. doi: 10.1074/jbc.M110.170761. Epub 2010 Nov 4.
In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supplying electrons to oxidized glutathione (GSSG) and Trx. This enzyme has recently been validated as a key drug target for flatworm infections. In this study, we show that TGR possesses GSH-independent deglutathionylase activity on a glutathionylated peptide. Furthermore, we demonstrate that deglutathionylation and GSSG reduction are mediated by the Grx domain by a monothiolic mechanism and that the glutathionylated TGR intermediate is resolved by selenocysteine. Deglutathionylation and GSSG reduction via Grx domain, but not Trx reduction, are inhibited at high [GSSG]/[GSH] ratios. We found that Trxs (cytosolic and mitochondrial) provide alternative pathways for deglutathionylation and GSSG reduction. These pathways are operative at high [GSSG]/[GSH] and function in a complementary manner to the Grx domain-dependent one. Despite the existence of alternative pathways, the thioredoxin reductase domains of TGR are an obligate electron route for both the Grx domain- and the Trx-dependent pathways. Overall, our results provide an explanation for the unique array of thiol-dependent redox pathways present in parasitic platyhelminths. Finally, we found that TGR is inhibited by 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), giving further evidence for NO donation as a mechanism of action for oxadiazole N-oxide TGR inhibitors. Thus, NO donors aimed at TGR could disrupt the entire redox homeostasis of parasitic flatworms.
在大多数生物体中,硫氧还蛋白 (Trx) 和/或谷胱甘肽 (GSH) 系统对于氧化还原平衡和脱氧核苷酸合成至关重要。扁形动物寄生虫具有独特而简化的基于硫醇的氧化还原系统,其中硒蛋白硫氧还蛋白-谷胱甘肽还原酶 (TGR) 是一种将谷氨酰半胱氨酸 (GSH) 和 Trx 氧化还原的酶,是唯一提供电子给氧化型谷胱甘肽 (GSSG) 和 Trx 的酶。该酶最近已被验证为扁形动物感染的关键药物靶点。在这项研究中,我们表明 TGR 在谷胱甘肽化肽上具有独立于 GSH 的脱谷胱甘肽酶活性。此外,我们证明脱谷胱甘肽化和 GSSG 还原是由 Grx 结构域通过单硫醇机制介导的,并且谷胱甘肽化的 TGR 中间体通过硒代半胱氨酸解决。通过 Grx 结构域进行的脱谷胱甘肽化和 GSSG 还原,而不是 Trx 还原,在高 [GSSG]/[GSH] 比下受到抑制。我们发现 Trxs(细胞质和线粒体)为脱谷胱甘肽化和 GSSG 还原提供了替代途径。这些途径在高 [GSSG]/[GSH] 下起作用,并以与 Grx 结构域依赖性途径互补的方式起作用。尽管存在替代途径,但 TGR 的硫氧还蛋白还原酶结构域是 Grx 结构域和 Trx 依赖性途径的必需电子途径。总的来说,我们的结果为寄生扁形动物中存在的独特的硫依赖氧化还原途径提供了解释。最后,我们发现 TGR 被 1-羟基-2-氧代-3-(N-3-甲基-氨基丙基)-3-甲基-1-三唑 (NOC-7) 抑制,这进一步证明了作为氧化二唑 N-氧化物 TGR 抑制剂作用机制的 NO 供体。因此,针对 TGR 的 NO 供体可能会破坏寄生扁形动物的整个氧化还原平衡。