Suppr超能文献

扁形动物门寄生虫中的硫氧还蛋白-谷胱甘肽系统:谷胱甘肽还原和去谷胱甘肽化的替代途径。

Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation.

机构信息

Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Avda A Navarro 3051, Piso 2, Montevideo 11600, Uruguay.

出版信息

J Biol Chem. 2011 Feb 18;286(7):4959-67. doi: 10.1074/jbc.M110.170761. Epub 2010 Nov 4.

Abstract

In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supplying electrons to oxidized glutathione (GSSG) and Trx. This enzyme has recently been validated as a key drug target for flatworm infections. In this study, we show that TGR possesses GSH-independent deglutathionylase activity on a glutathionylated peptide. Furthermore, we demonstrate that deglutathionylation and GSSG reduction are mediated by the Grx domain by a monothiolic mechanism and that the glutathionylated TGR intermediate is resolved by selenocysteine. Deglutathionylation and GSSG reduction via Grx domain, but not Trx reduction, are inhibited at high [GSSG]/[GSH] ratios. We found that Trxs (cytosolic and mitochondrial) provide alternative pathways for deglutathionylation and GSSG reduction. These pathways are operative at high [GSSG]/[GSH] and function in a complementary manner to the Grx domain-dependent one. Despite the existence of alternative pathways, the thioredoxin reductase domains of TGR are an obligate electron route for both the Grx domain- and the Trx-dependent pathways. Overall, our results provide an explanation for the unique array of thiol-dependent redox pathways present in parasitic platyhelminths. Finally, we found that TGR is inhibited by 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), giving further evidence for NO donation as a mechanism of action for oxadiazole N-oxide TGR inhibitors. Thus, NO donors aimed at TGR could disrupt the entire redox homeostasis of parasitic flatworms.

摘要

在大多数生物体中,硫氧还蛋白 (Trx) 和/或谷胱甘肽 (GSH) 系统对于氧化还原平衡和脱氧核苷酸合成至关重要。扁形动物寄生虫具有独特而简化的基于硫醇的氧化还原系统,其中硒蛋白硫氧还蛋白-谷胱甘肽还原酶 (TGR) 是一种将谷氨酰半胱氨酸 (GSH) 和 Trx 氧化还原的酶,是唯一提供电子给氧化型谷胱甘肽 (GSSG) 和 Trx 的酶。该酶最近已被验证为扁形动物感染的关键药物靶点。在这项研究中,我们表明 TGR 在谷胱甘肽化肽上具有独立于 GSH 的脱谷胱甘肽酶活性。此外,我们证明脱谷胱甘肽化和 GSSG 还原是由 Grx 结构域通过单硫醇机制介导的,并且谷胱甘肽化的 TGR 中间体通过硒代半胱氨酸解决。通过 Grx 结构域进行的脱谷胱甘肽化和 GSSG 还原,而不是 Trx 还原,在高 [GSSG]/[GSH] 比下受到抑制。我们发现 Trxs(细胞质和线粒体)为脱谷胱甘肽化和 GSSG 还原提供了替代途径。这些途径在高 [GSSG]/[GSH] 下起作用,并以与 Grx 结构域依赖性途径互补的方式起作用。尽管存在替代途径,但 TGR 的硫氧还蛋白还原酶结构域是 Grx 结构域和 Trx 依赖性途径的必需电子途径。总的来说,我们的结果为寄生扁形动物中存在的独特的硫依赖氧化还原途径提供了解释。最后,我们发现 TGR 被 1-羟基-2-氧代-3-(N-3-甲基-氨基丙基)-3-甲基-1-三唑 (NOC-7) 抑制,这进一步证明了作为氧化二唑 N-氧化物 TGR 抑制剂作用机制的 NO 供体。因此,针对 TGR 的 NO 供体可能会破坏寄生扁形动物的整个氧化还原平衡。

相似文献

2
Thioredoxin glutathione reductase-dependent redox networks in platyhelminth parasites.
Antioxid Redox Signal. 2013 Sep 1;19(7):735-45. doi: 10.1089/ars.2012.4670. Epub 2012 Oct 3.
3
Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths.
BMC Genomics. 2010 Apr 13;11:237. doi: 10.1186/1471-2164-11-237.
6
Linked thioredoxin-glutathione systems in platyhelminths.
Trends Parasitol. 2004 Jul;20(7):340-6. doi: 10.1016/j.pt.2004.05.002.
7
The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).
Antioxid Redox Signal. 2017 Dec 20;27(18):1491-1504. doi: 10.1089/ars.2016.6816. Epub 2017 Jun 26.
8
Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3673-8. doi: 10.1073/pnas.051454398. Epub 2001 Mar 20.
9
Biochemical and thermodynamic comparison of the selenocysteine containing and non-containing thioredoxin glutathione reductase of Fasciola gigantica.
Biochim Biophys Acta Gen Subj. 2018 Jun;1862(6):1306-1316. doi: 10.1016/j.bbagen.2018.03.007. Epub 2018 Mar 9.
10
Role of the glutaredoxin domain and FAD in the stabilization of thioredoxin glutathione reductase.
Arch Biochem Biophys. 2018 Oct 15;656:38-45. doi: 10.1016/j.abb.2018.09.002. Epub 2018 Sep 8.

引用本文的文献

8
Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR).
Enzyme Res. 2018 Sep 5;2018:3215462. doi: 10.1155/2018/3215462. eCollection 2018.
9
The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).
Antioxid Redox Signal. 2017 Dec 20;27(18):1491-1504. doi: 10.1089/ars.2016.6816. Epub 2017 Jun 26.
10
Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening.
J Med Chem. 2016 Aug 11;59(15):7075-88. doi: 10.1021/acs.jmedchem.5b02038. Epub 2016 Jul 22.

本文引用的文献

1
Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography.
J Biol Chem. 2010 Oct 15;285(42):32557-67. doi: 10.1074/jbc.M110.141960. Epub 2010 Jul 21.
3
Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths.
BMC Genomics. 2010 Apr 13;11:237. doi: 10.1186/1471-2164-11-237.
4
6
Protein denitrosylation: enzymatic mechanisms and cellular functions.
Nat Rev Mol Cell Biol. 2009 Oct;10(10):721-32. doi: 10.1038/nrm2764. Epub 2009 Sep 9.
8
Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae.
J Mol Biol. 2009 Jan 23;385(3):889-901. doi: 10.1016/j.jmb.2008.10.055. Epub 2008 Oct 28.
10
Identification of oxadiazoles as new drug leads for the control of schistosomiasis.
Nat Med. 2008 Apr;14(4):407-12. doi: 10.1038/nm1737. Epub 2008 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验