Suppr超能文献

硫氧还蛋白和谷胱甘肽系统在寄生和自由生活的扁形动物中存在差异。

Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths.

机构信息

Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Avda, A, Navarro 3051, Montevideo, Uruguay.

出版信息

BMC Genomics. 2010 Apr 13;11:237. doi: 10.1186/1471-2164-11-237.

Abstract

BACKGROUND

The thioredoxin and/or glutathione pathways occur in all organisms. They provide electrons for deoxyribonucleotide synthesis, function as antioxidant defenses, in detoxification, Fe/S biogenesis and participate in a variety of cellular processes. In contrast to their mammalian hosts, platyhelminth (flatworm) parasites studied so far, lack conventional thioredoxin and glutathione systems. Instead, they possess a linked thioredoxin-glutathione system with the selenocysteine-containing enzyme thioredoxin glutathione reductase (TGR) as the single redox hub that controls the overall redox homeostasis. TGR has been recently validated as a drug target for schistosomiasis and new drug leads targeting TGR have recently been identified for these platyhelminth infections that affect more than 200 million people and for which a single drug is currently available. Little is known regarding the genomic structure of flatworm TGRs, the expression of TGR variants and whether the absence of conventional thioredoxin and glutathione systems is a signature of the entire platyhelminth phylum.

RESULTS

We examine platyhelminth genomes and transcriptomes and find that all platyhelminth parasites (from classes Cestoda and Trematoda) conform to a biochemical scenario involving, exclusively, a selenium-dependent linked thioredoxin-glutathione system having TGR as a central redox hub. In contrast, the free-living platyhelminth Schmidtea mediterranea (Class Turbellaria) possesses conventional and linked thioredoxin and glutathione systems. We identify TGR variants in Schistosoma spp. derived from a single gene, and demonstrate their expression. We also provide experimental evidence that alternative initiation of transcription and alternative transcript processing contribute to the generation of TGR variants in platyhelminth parasites.

CONCLUSIONS

Our results indicate that thioredoxin and glutathione pathways differ in parasitic and free-living flatworms and that canonical enzymes were specifically lost in the parasitic lineage. Platyhelminth parasites possess a unique and simplified redox system for diverse essential processes, and thus TGR is an excellent drug target for platyhelminth infections. Inhibition of the central redox wire hub would lead to overall disruption of redox homeostasis and disable DNA synthesis.

摘要

背景

硫氧还蛋白和/或谷胱甘肽途径存在于所有生物体中。它们为脱氧核苷酸合成提供电子,作为抗氧化防御,参与解毒、Fe/S 生物发生,并参与各种细胞过程。与它们的哺乳动物宿主不同,迄今为止研究过的扁形动物(扁形虫)寄生虫缺乏传统的硫氧还蛋白和谷胱甘肽系统。相反,它们拥有一个连接的硫氧还蛋白-谷胱甘肽系统,其中含硒半胱氨酸的酶硫氧还蛋白谷胱甘肽还原酶(TGR)作为单个氧化还原中心,控制整体氧化还原稳态。TGR 最近已被验证为血吸虫病的药物靶点,并且最近针对这些影响超过 2 亿人的扁形动物感染的 TGR 新药物靶点已被确定,而目前只有一种药物可用。关于扁形动物 TGR 的基因组结构、TGR 变体的表达以及缺乏传统的硫氧还蛋白和谷胱甘肽系统是否是整个扁形动物门的特征,人们知之甚少。

结果

我们检查了扁形动物的基因组和转录组,发现所有扁形动物寄生虫(来自类绦虫和吸虫)都符合一种生化情景,仅涉及具有 TGR 作为中央氧化还原中心的硒依赖连接的硫氧还蛋白-谷胱甘肽系统。相比之下,自由生活的扁形动物地中海扁形虫(类涡虫)拥有传统的和连接的硫氧还蛋白和谷胱甘肽系统。我们在血吸虫属中鉴定出源自单个基因的 TGR 变体,并证明了它们的表达。我们还提供了实验证据表明,转录的替代起始和转录本的替代加工有助于在扁形动物寄生虫中产生 TGR 变体。

结论

我们的结果表明,硫氧还蛋白和谷胱甘肽途径在寄生和自由生活的扁形动物中不同,而在寄生谱系中特定的经典酶被丢失。扁形动物寄生虫拥有独特而简化的氧化还原系统,用于多种必需过程,因此 TGR 是扁形动物感染的极佳药物靶点。中央氧化还原线枢纽的抑制将导致整体氧化还原稳态的破坏,并使 DNA 合成失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验