Suppr超能文献

人工智能中的深度学习光学与光子学推理。

Inference in artificial intelligence with deep optics and photonics.

机构信息

Stanford University, Stanford, CA, USA.

University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nature. 2020 Dec;588(7836):39-47. doi: 10.1038/s41586-020-2973-6. Epub 2020 Dec 2.

Abstract

Artificial intelligence tasks across numerous applications require accelerators for fast and low-power execution. Optical computing systems may be able to meet these domain-specific needs but, despite half a century of research, general-purpose optical computing systems have yet to mature into a practical technology. Artificial intelligence inference, however, especially for visual computing applications, may offer opportunities for inference based on optical and photonic systems. In this Perspective, we review recent work on optical computing for artificial intelligence applications and discuss its promise and challenges.

摘要

人工智能任务在众多应用中都需要加速器来实现快速、低功耗的执行。光学计算系统可能能够满足这些特定领域的需求,但尽管研究了半个世纪,通用光学计算系统仍未成熟为一种实用技术。然而,人工智能推断,特别是对于视觉计算应用,可能为基于光学和光子系统的推断提供机会。在这篇观点文章中,我们回顾了最近在人工智能应用的光学计算方面的工作,并讨论了其前景和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验