Suppr超能文献

黏度是否描述了从液相到玻璃化转变过程中晶体生长的动力学障碍?

Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?

机构信息

Institute of Humanities, Arts and Sciences, Federal University of Bahia, Rua Barão de Jeremoabo s/n, Glauber Rocha Pavilion (PAF3), Ondina University Campus, 40170-115 Salvador, Bahia, Brazil.

出版信息

J Chem Phys. 2010 Nov 7;133(17):174701. doi: 10.1063/1.3490793.

Abstract

An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 10(4)-10(12) Pa  s. Here, we revisit their interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region T(g), thus covering a wider viscosity range: 10(1)-10(13) Pa  s. We then propose and use normalized kinetic coefficients (M(kin)) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (M(kin)∼1/η and ξ∼1) from low to moderate viscosities (η<10(6) Pa  s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to T(g)! However, for at least three fragile liquids, diopside (kink at 1.08T(g), η=1.6×10(8) Pa  s), lead metasilicate (kink at 1.14T(g), η=4.3×10(6) Pa  s), and lithium disilicate (kink at 1.11T(g), η=1.6×10(8) Pa  s), there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that viscosity data cannot be used to describe the transport part of the crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of T(g).

摘要

Ediger 等人最近提出的晶体生长动力系数 U(kin)的分析[J. Chem. Phys. 128, 034709 (2008)]表明,Stokes-Einstein/Eyring (SE/E)方程不能描述控制脆性玻璃形成液体中晶体生长速率的扩散过程。U(kin)是使用正常生长模型定义的,并针对涵盖约 10(4)-10(12) Pa·s 粘度范围的无机和有机液体的晶体数据进行了测试。在这里,我们考虑另外两个模型:螺位错 (SD) 和二维表面成核 (2D) 生长模型,重新研究了他们的有趣发现,针对九种过冷氧化物液体,在更宽的温度范围内,从略低于熔点到玻璃化转变区 T(g),从而覆盖更宽的粘度范围:10(1)-10(13) Pa·s。然后,我们提出并使用 SD 和 2D 生长模型的归一化动力系数 (M(kin))。这些新的动力系数恢复了粘度描述晶体生长速率的输运部分的能力(M(kin)∼1/η 和 ξ∼1),从低粘度(η<10(6) Pa·s)到中等粘度,因此 SE/E 方程在所有测试系统的这个粘度范围内都能很好地工作。对于强玻璃,SE/E 方程从低到高粘度,从熔点到 T(g)都能很好地工作!然而,对于至少三种脆性液体,透辉石(在 1.08T(g)处出现拐点,η=1.6×10(8) Pa·s)、硅酸铅(在 1.14T(g)处出现拐点,η=4.3×10(6) Pa·s)和二硅酸锂(在 1.11T(g)处出现拐点,η=1.6×10(8) Pa·s),在这些较高的粘度下,SE/E 方程出现明显的失效迹象。我们的结果证实了 Ediger 等人的发现,并表明在 T(g)附近的脆性玻璃中,粘度数据不能用于描述晶体生长的输运部分(通过 SE/E 方程)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验