Suppr超能文献

使用半参数变换和加速失效时间模型分析长度偏倚数据。

Analyzing Length-biased Data with Semiparametric Transformation and Accelerated Failure Time Models.

作者信息

Shen Yu, Ning Jing, Qin Jing

机构信息

Department of Biostatistics M. D. Anderson Cancer Center The University of Texas, Houston, TX 77030

出版信息

J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202. doi: 10.1198/jasa.2009.tm08614.

Abstract

Right-censored time-to-event data are often observed from a cohort of prevalent cases that are subject to length-biased sampling. Informative right censoring of data from the prevalent cohort within the population often makes it difficult to model risk factors on the unbiased failure times for the general population, because the observed failure times are length biased. In this paper, we consider two classes of flexible semiparametric models: the transformation models and the accelerated failure time models, to assess covariate effects on the population failure times by modeling the length-biased times. We develop unbiased estimating equation approaches to obtain the consistent estimators of the regression coefficients. Large sample properties for the estimators are derived. The methods are confirmed through simulations and illustrated by application to data from a study of a prevalent cohort of dementia patients.

摘要

右删失的事件发生时间数据通常来自一组存在长度偏倚抽样的现患病例队列。人群中现患队列数据的信息性右删失常常使得难以针对一般人群的无偏失效时间对风险因素进行建模,因为观察到的失效时间存在长度偏倚。在本文中,我们考虑两类灵活的半参数模型:变换模型和加速失效时间模型,通过对长度偏倚时间进行建模来评估协变量对总体失效时间的影响。我们开发了无偏估计方程方法来获得回归系数的一致估计量。推导了估计量的大样本性质。通过模拟验证了这些方法,并通过应用于一项痴呆症患者现患队列研究的数据进行了说明。

相似文献

1
Analyzing Length-biased Data with Semiparametric Transformation and Accelerated Failure Time Models.
J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202. doi: 10.1198/jasa.2009.tm08614.
3
Buckley-James-type estimator with right-censored and length-biased data.
Biometrics. 2011 Dec;67(4):1369-78. doi: 10.1111/j.1541-0420.2011.01568.x. Epub 2011 Mar 8.
4
Analysis of restricted mean survival time for length-biased data.
Biometrics. 2018 Jun;74(2):575-583. doi: 10.1111/biom.12772. Epub 2017 Sep 8.
5
Nonparametric and semiparametric regression estimation for length-biased survival data.
Lifetime Data Anal. 2017 Jan;23(1):3-24. doi: 10.1007/s10985-016-9367-y. Epub 2016 Apr 16.
6
Score Estimating Equations from Embedded Likelihood Functions under Accelerated Failure Time Model.
J Am Stat Assoc. 2014 Oct;109(508):1625-1635. doi: 10.1080/01621459.2014.946034.
7
Accelerated failure time model under general biased sampling scheme.
Biostatistics. 2016 Jul;17(3):576-88. doi: 10.1093/biostatistics/kxw008. Epub 2016 Mar 3.
8
Statistical methods for analyzing right-censored length-biased data under cox model.
Biometrics. 2010 Jun;66(2):382-92. doi: 10.1111/j.1541-0420.2009.01287.x. Epub 2009 Jun 12.
9
Combined estimating equation approaches for semiparametric transformation models with length-biased survival data.
Biometrics. 2014 Sep;70(3):608-18. doi: 10.1111/biom.12170. Epub 2014 Apr 18.
10
Censored quantile regression model with time-varying covariates under length-biased sampling.
Biometrics. 2020 Dec;76(4):1201-1215. doi: 10.1111/biom.13230. Epub 2020 Feb 28.

引用本文的文献

1
Time-to-Event Analysis with Unknown Time Origins via Longitudinal Biomarker Registration.
J Am Stat Assoc. 2023;118(543):1968-1983. doi: 10.1080/01621459.2021.2023552. Epub 2022 Feb 28.
2
Some properties of stop-loss moments under biased sampling.
J Appl Stat. 2022 Apr 28;50(10):2127-2150. doi: 10.1080/02664763.2022.2065468. eCollection 2023.
5
Bayesian analysis of the Box-Cox transformation model based on left-truncated and right-censored data.
J Appl Stat. 2020 Jun 25;48(8):1429-1441. doi: 10.1080/02664763.2020.1784854. eCollection 2021.
6
Analyzing left-truncated and right-censored infectious disease cohort data with interval-censored infection onset.
Stat Med. 2021 Jan 30;40(2):287-298. doi: 10.1002/sim.8774. Epub 2020 Oct 21.
8
Semiparametric Model for Bivariate Survival Data Subject to Biased Sampling.
J R Stat Soc Series B Stat Methodol. 2019 Apr;81(2):409-429. doi: 10.1111/rssb.12308. Epub 2019 Jan 6.
9
Mediation analysis in a case-control study when the mediator is a censored variable.
Stat Med. 2019 Mar 30;38(7):1213-1229. doi: 10.1002/sim.8028. Epub 2018 Nov 12.
10
Semiparametric regression analysis of length-biased interval-censored data.
Biometrics. 2019 Mar;75(1):121-132. doi: 10.1111/biom.12970. Epub 2019 Mar 8.

本文引用的文献

2
A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up.
Lifetime Data Anal. 2006 Sep;12(3):267-84. doi: 10.1007/s10985-006-9012-2. Epub 2006 Aug 18.
3
Checking stationarity of the incidence rate using prevalent cohort survival data.
Stat Med. 2006 May 30;25(10):1751-67. doi: 10.1002/sim.2326.
4
Forward and backward recurrence times and length biased sampling: age specific models.
Lifetime Data Anal. 2004 Dec;10(4):325-34. doi: 10.1007/s10985-004-4770-1.
5
On the use of familial aggregation in population-based case probands for calculating penetrance.
J Natl Cancer Inst. 2002 Aug 21;94(16):1221-6. doi: 10.1093/jnci/94.16.1221.
6
A reevaluation of the duration of survival after the onset of dementia.
N Engl J Med. 2001 Apr 12;344(15):1111-6. doi: 10.1056/NEJM200104123441501.
7
Estimation of regression parameters and the hazard function in transformed linear survival models.
Biometrics. 2000 Jun;56(2):571-6. doi: 10.1111/j.0006-341x.2000.00571.x.
8
Length biased sampling in etiologic studies.
Am J Epidemiol. 1980 Apr;111(4):444-52. doi: 10.1093/oxfordjournals.aje.a112920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验