Ning Jing, Qin Jing, Shen Yu
Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA.
J Am Stat Assoc. 2014 Oct;109(508):1625-1635. doi: 10.1080/01621459.2014.946034.
The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.
半参数加速失效时间(AFT)模型是分析事件发生时间结局最常用的模型之一。AFT模型的一个吸引人的特点是,观测到的失效时间数据可以转换为独立同分布的随机变量,而不受协变量的影响。我们基于变换后数据的得分函数描述了一类估计方程,这些得分函数是从常用半参数模型(如比例风险模型或比例优势模型)下的全似然函数推导出来的。AFT模型下估计回归参数的方法可以应用于传统的右删失生存数据以及受长度偏倚抽样影响的更复杂的事件发生时间数据。我们建立了所提出估计量的渐近性质,并评估了其小样本性能。我们通过两个例子的应用来说明所提出的方法。