Suppr超能文献

基于模糊算法的飞行时间磁共振血管造影(TOF-MRA)图像血管结构增强以改善分割效果

Fuzzy-based vascular structure enhancement in Time-of-Flight MRA images for improved segmentation.

作者信息

Forkert N D, Schmidt-Richberg A, Fiehler J, Illies T, Möller D, Handels H, Säring D

机构信息

Department of Medical Informatics, University Medical Center Hamburg-Eppendorf, Bldg. W36, Martinistraße 52, 20246 Hamburg, Germany.

出版信息

Methods Inf Med. 2011;50(1):74-83. doi: 10.3414/ME10-02-0003. Epub 2010 Nov 8.

Abstract

OBJECTIVES

Cerebral vascular malformations might lead to strokes due to occurrence of ruptures. The rupture risk is highly related to the individual vascular anatomy. The 3D Time-of-Flight (TOF) MRA technique is a commonly used non-invasive imaging technique for exploration of the vascular anatomy. Several clinical applications require exact cerebrovascular segmentations from this image sequence. For this purpose, intensity-based segmentation approaches are widely used. Since small low-contrast vessels are often not detected, vesselness filter-based segmentation schemes have been proposed, which contrariwise have problems detecting malformed vessels. In this paper, a fuzzy logic-based method for fusion of intensity and vesselness information is presented, allowing an improved segmentation of malformed and small vessels at preservation of advantages of both approaches.

METHODS

After preprocessing of a TOF dataset, the corresponding vesselness image is computed. The role of the fuzzy logic is to voxel-wisely fuse the intensity information from the TOF dataset with the corresponding vesselness information based on an analytically designed rule base. The resulting fuzzy parameter image can then be used for improved cerebrovascular segmentation.

RESULTS

Six datasets, manually segmented by medical experts, were used for evaluation. Based on TOF, vesselness and fused fuzzy parameter images, the vessels of each patient were segmented using optimal thresholds computed by maximizing the agreement to manual segmentations using the Tanimoto coefficient. The results showed an overall improvement of 0.054 (fuzzy vs. TOF) and 0.079 (fuzzy vs. vesselness). Furthermore, the evaluation has shown that the method proposed yields better results than statistical Bayes classification.

CONCLUSION

The proposed method can automatically fuse the benefits of intensity and vesselness information and can improve the results of following cerebrovascular segmentations.

摘要

目的

脑血管畸形可能因破裂而导致中风。破裂风险与个体血管解剖结构高度相关。三维时间飞跃(TOF)磁共振血管造影(MRA)技术是一种常用的用于探索血管解剖结构的非侵入性成像技术。一些临床应用需要从该图像序列中进行精确的脑血管分割。为此,基于强度的分割方法被广泛使用。由于小的低对比度血管常常无法检测到,基于血管性滤波器的分割方案被提出,然而这些方案在检测畸形血管时存在问题。本文提出了一种基于模糊逻辑的强度和血管性信息融合方法,在保留两种方法优点的同时,可改善畸形血管和小血管的分割效果。

方法

对TOF数据集进行预处理后,计算相应的血管性图像。模糊逻辑的作用是基于解析设计的规则库,逐体素地将TOF数据集中的强度信息与相应的血管性信息进行融合。然后,得到的模糊参数图像可用于改进脑血管分割。

结果

使用由医学专家手动分割的六个数据集进行评估。基于TOF、血管性和融合后的模糊参数图像,利用通过使用Tanimoto系数最大化与手动分割的一致性来计算的最佳阈值,对每位患者的血管进行分割。结果显示总体改善分别为0.054(模糊与TOF对比)和0.079(模糊与血管性对比)。此外,评估表明所提出的方法比统计贝叶斯分类产生更好的结果。

结论

所提出的方法能够自动融合强度和血管性信息的优势,并可改善后续脑血管分割的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验