Suppr超能文献

比较应用于 TOF MRA 图像的血管增强算法在脑血管分割中的应用。

Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

机构信息

Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Hospital Drive NW, Calgary, AB, Canada.

出版信息

Med Phys. 2017 Nov;44(11):5901-5915. doi: 10.1002/mp.12560. Epub 2017 Oct 13.

Abstract

PURPOSE

Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH).

METHODS

The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison.

RESULTS

The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM, because vessels may vary from its tubular-shape in this case.

CONCLUSIONS

Vessel enhancement algorithms can help to improve the accuracy of the segmentation of the vascular system. However, their contribution to accuracy has to be evaluated as it depends on the specific applications, and in some cases it can lead to a reduction of the overall accuracy. No specific filter was suitable for all tested scenarios.

摘要

目的

血管增强算法常被用作医学图像中血管分割的预处理步骤,以提高整体分割准确性。每种算法都使用不同的特征来增强血管,因此对于不同的应用,最合适的算法可能会有所不同。本文对使用 9 种血管增强算法生成的血管分割精度增益进行了比较分析:使用 Erdt 公式描述的多尺度血管性(MSE)、Frangi(MSF)和 Sato(MSS)、最优定向通量(OOF)、排序方向响应路径算子(RORPO)、正则化 Perona-Malik 方法(RPM)、血管增强扩散(VED)、连续切换混合扩散(HDCS)和白顶帽算法(WTH)。

方法

基于 5 名健康受试者和 10 名动静脉畸形患者的时飞越磁共振血管造影(MRA)数据集和相应的手动分割,对滤波器进行了评估和比较。此外,还生成了具有三个不同噪声水平(低、中、高)的五个合成血管造影数据集及其相应的地面真实分割,也用于比较。使用留一交叉验证优化了每个算法及其后续分割的参数。使用 Dice 系数、马修斯相关系数、ROC 曲线下面积、连通分量数和真阳性进行比较。

结果

这项研究的结果表明,与直接对未增强的图像进行分割相比,血管增强算法并不总是能得到更准确的分割结果。多尺度血管性算法,如 MSE、MSF 和 MSS 被证明对噪声具有鲁棒性,而基于扩散的滤波器,如 RPM、VED 和 HDCS,在中噪声或无噪声情况下排名靠前。假设管状形状的滤波器,如 MSE、MSF、MSS、OOF、RORPO 和 VED,在考虑动静脉畸形患者时准确性会降低,因为在这种情况下,血管可能与其管状形状不同。

结论

血管增强算法可以帮助提高血管系统分割的准确性。然而,它们对准确性的贡献必须根据具体的应用进行评估,在某些情况下,它们可能会降低整体准确性。没有特定的滤波器适用于所有测试场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验