Suppr超能文献

融合形态测量学和成像数据的多模态脑龄预测及其与心血管危险因素的关联。

Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors.

作者信息

Mouches Pauline, Wilms Matthias, Aulakh Agampreet, Langner Sönke, Forkert Nils D

机构信息

Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada.

Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.

出版信息

Front Neurol. 2022 Dec 14;13:979774. doi: 10.3389/fneur.2022.979774. eCollection 2022.

Abstract

INTRODUCTION

The difference between the chronological and biological brain age, called the brain age gap (BAG), has been identified as a promising biomarker to detect deviation from normal brain aging and to indicate the presence of neurodegenerative diseases. Moreover, the BAG has been shown to encode biological information about general health, which can be measured through cardiovascular risk factors. Current approaches for biological brain age estimation, and therefore BAG estimation, either depend on hand-crafted, morphological measurements extracted from brain magnetic resonance imaging (MRI) or on direct analysis of brain MRI images. The former can be processed with traditional machine learning models while the latter is commonly processed with convolutional neural networks (CNNs). Using a multimodal setting, this study aims to compare both approaches in terms of biological brain age prediction accuracy and biological information captured in the BAG.

METHODS

T1-weighted MRI, containing brain tissue information, and magnetic resonance angiography (MRA), providing information about brain arteries, from 1,658 predominantly healthy adults were used. The volumes, surface areas, and cortical thickness of brain structures were extracted from the T1-weighted MRI data, while artery density and thickness within the major blood flow territories and thickness of the major arteries were extracted from MRA data. Independent multilayer perceptron and CNN models were trained to estimate the brain age from the hand-crafted features and image data, respectively. Next, both approaches were fused to assess the benefits of combining image data and hand-crafted features for brain age prediction.

RESULTS

The combined model achieved a mean absolute error of 4 years between the chronological and predicted biological brain age. Among the independent models, the lowest mean absolute error was observed for the CNN using T1-weighted MRI data (4.2 years). When evaluating the BAGs obtained using the different approaches and imaging modalities, diverging associations between cardiovascular risk factors were found. For example, BAGs obtained from the CNN models showed an association with systolic blood pressure, while BAGs obtained from hand-crafted measurements showed greater associations with obesity markers.

DISCUSSION

In conclusion, the use of more diverse sources of data can improve brain age estimation modeling and capture more diverse biological deviations from normal aging.

摘要

引言

实际脑龄与生物学脑龄之间的差异,即脑龄差距(BAG),已被确定为一种有前景的生物标志物,可用于检测与正常脑老化的偏差,并提示神经退行性疾病的存在。此外,BAG已被证明能够编码有关总体健康状况的生物学信息,这可以通过心血管危险因素来衡量。目前用于估计生物学脑龄以及BAG的方法,要么依赖于从脑磁共振成像(MRI)中提取的手工制作的形态学测量值,要么依赖于对脑MRI图像的直接分析。前者可以使用传统机器学习模型进行处理,而后者通常使用卷积神经网络(CNN)进行处理。本研究旨在通过多模态设置,在生物学脑龄预测准确性以及BAG中捕获的生物学信息方面比较这两种方法。

方法

使用了1658名主要为健康成年人的T1加权MRI(包含脑组织信息)和磁共振血管造影(MRA,提供脑动脉信息)。从T1加权MRI数据中提取脑结构的体积、表面积和皮质厚度,而从MRA数据中提取主要血流区域内的动脉密度和厚度以及主要动脉的厚度。分别训练独立的多层感知器和CNN模型,以从手工制作的特征和图像数据中估计脑龄。接下来,将这两种方法融合,以评估结合图像数据和手工制作的特征进行脑龄预测的益处。

结果

联合模型在实际脑龄与预测的生物学脑龄之间实现了4年的平均绝对误差。在独立模型中,使用T1加权MRI数据的CNN的平均绝对误差最低(4.2年)。在评估使用不同方法和成像模态获得的BAG时,发现心血管危险因素之间存在不同的关联。例如,从CNN模型获得的BAG与收缩压相关,而从手工制作的测量中获得的BAG与肥胖标志物的关联更强。

讨论

总之,使用更多样化的数据来源可以改善脑龄估计模型,并捕获与正常老化更多样化的生物学偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea62/9794870/ead9ff1a94c9/fneur-13-979774-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验