Suppr超能文献

深度血管网络:三维血管造影体积中的血管分割、中心线预测和分叉检测

DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes.

作者信息

Tetteh Giles, Efremov Velizar, Forkert Nils D, Schneider Matthias, Kirschke Jan, Weber Bruno, Zimmer Claus, Piraud Marie, Menze Björn H

机构信息

Department of Computer Science, TU München, München, Germany.

Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.

出版信息

Front Neurosci. 2020 Dec 8;14:592352. doi: 10.3389/fnins.2020.592352. eCollection 2020.

Abstract

We present DeepVesselNet, an architecture tailored to the challenges faced when extracting vessel trees and networks and corresponding features in 3-D angiographic volumes using deep learning. We discuss the problems of low execution speed and high memory requirements associated with full 3-D networks, high-class imbalance arising from the low percentage (<3%) of vessel voxels, and unavailability of accurately annotated 3-D training data-and offer solutions as the building blocks of DeepVesselNet. First, we formulate 2-D orthogonal cross-hair filters which make use of 3-D context information at a reduced computational burden. Second, we introduce a class balancing cross-entropy loss function with false-positive rate correction to handle the high-class imbalance and high false positive rate problems associated with existing loss functions. Finally, we generate a synthetic dataset using a computational angiogenesis model capable of simulating vascular tree growth under physiological constraints on local network structure and topology and use these data for transfer learning. We demonstrate the performance on a range of angiographic volumes at different spatial scales including clinical MRA data of the human brain, as well as CTA microscopy scans of the rat brain. Our results show that cross-hair filters achieve over 23% improvement in speed, lower memory footprint, lower network complexity which prevents overfitting and comparable accuracy that does not differ from full 3-D filters. Our class balancing metric is crucial for training the network, and transfer learning with synthetic data is an efficient, robust, and very generalizable approach leading to a network that excels in a variety of angiography segmentation tasks. We observe that sub-sampling and max pooling layers may lead to a drop in performance in tasks that involve voxel-sized structures. To this end, the DeepVesselNet architecture does not use any form of sub-sampling layer and works well for vessel segmentation, centerline prediction, and bifurcation detection. We make our synthetic training data publicly available, fostering future research, and serving as one of the first public datasets for brain vessel tree segmentation and analysis.

摘要

我们提出了深度血管网络(DeepVesselNet),这是一种针对使用深度学习从三维血管造影体积中提取血管树、网络及相应特征时所面临的挑战而量身定制的架构。我们讨论了与全三维网络相关的执行速度低和内存需求高的问题、血管体素比例低(<3%)导致的高度类不平衡问题,以及准确标注的三维训练数据不可用的问题,并提供了作为深度血管网络构建模块的解决方案。首先,我们制定了二维正交十字准线滤波器,其利用三维上下文信息,同时降低了计算负担。其次,我们引入了一种带有误报率校正的类平衡交叉熵损失函数,以处理与现有损失函数相关的高度类不平衡和高误报率问题。最后,我们使用一种能够在局部网络结构和拓扑的生理约束下模拟血管树生长的计算血管生成模型生成一个合成数据集,并将这些数据用于迁移学习。我们在一系列不同空间尺度的血管造影体积上展示了其性能,包括人脑的临床磁共振血管造影(MRA)数据以及大鼠脑的计算机断层血管造影(CTA)显微镜扫描数据。我们的结果表明,十字准线滤波器在速度上提高了超过23%,内存占用更低,网络复杂度更低,从而防止了过拟合,并且具有与全三维滤波器相当的精度。我们的类平衡指标对于训练网络至关重要,并且使用合成数据进行迁移学习是一种高效、稳健且非常通用的方法,能够得到在各种血管造影分割任务中表现出色的网络。我们观察到下采样和最大池化层可能会导致在涉及体素大小结构的任务中性能下降。为此,深度血管网络架构不使用任何形式的下采样层,并且在血管分割、中心线预测和分叉检测方面表现良好。我们公开了我们的合成训练数据,以促进未来的研究,并作为首批用于脑血管树分割和分析的公共数据集之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验