Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29/E360, A-1040 Wien, Austria.
Nano Lett. 2010 Dec 8;10(12):4913-9. doi: 10.1021/nl102875k. Epub 2010 Nov 8.
The mobility of p-type nanowires (NWs) with diameters of D = 12 nm down to D = 3 nm in [100], [110], and [111] transport orientations is calculated. An atomistic tight-binding model is used to calculate the NW electronic structure. Linearized Boltzmann transport theory is applied, including phonon and surface roughness scattering (SRS) mechanisms, for the mobility calculation. We find that large mobility enhancements (of the order of 4×) can be achieved as the diameter of the [110] and even more that of the [111] NWs scales down to D = 3 nm. This enhancement originates from the increase in the dispersion curvatures and consequently the hole velocities as the diameter is scaled. This benefit overcompensates the mobility reduction caused by SRS as the diameter reduces. The mobility of the [100] NWs, on the other hand, is the lowest compared to the other two NW orientations and, additionally, suffers as the diameter scales. The bandstructure engineering techniques we describe are a generic feature of anisotropic bulk bands and can be also applied to 2D thin body layers as well as other channel materials.
我们计算了直径为 D=12nm 至 D=3nm 的 p 型纳米线(NW)在[100]、[110]和[111]传输方向上的迁移率。我们使用原子紧束缚模型来计算 NW 的电子结构。线性化玻尔兹曼输运理论被应用于迁移率的计算,包括声子和表面粗糙度散射(SRS)机制。我们发现,随着[110]甚至更细的[111]NW 直径缩小到 D=3nm,迁移率可以大幅提高(约 4 倍)。这种增强源于直径缩小导致的能带色散曲率增加,从而导致空穴速度增加。这种好处超过了由于 SRS 导致的迁移率降低的影响。另一方面,与其他两个 NW 方向相比,[100]NW 的迁移率最低,而且随着直径的缩小,迁移率也会受到影响。我们所描述的能带结构工程技术是各向异性体带的通用特征,也可以应用于二维薄体层以及其他沟道材料。