L_Sim, SP2M, UMR-E CEA/UJF-Grenoble 1, Institut Nanosciences et Cryogénie (INAC), Grenoble, France.
Nano Lett. 2012 Jul 11;12(7):3545-50. doi: 10.1021/nl3010995. Epub 2012 Jun 18.
We investigate electron and hole mobilities in strained silicon nanowires (Si NWs) within an atomistic tight-binding framework. We show that the carrier mobilities in Si NWs are very responsive to strain and can be enhanced or reduced by a factor >2 (up to 5×) for moderate strains in the ± 2% range. The effects of strain on the transport properties are, however, very dependent on the orientation of the nanowires. Stretched 100 Si NWs are found to be the best compromise for the transport of both electrons and holes in ≈10 nm diameter Si NWs. Our results demonstrate that strain engineering can be used as a very efficient booster for NW technologies and that due care must be given to process-induced strains in NW devices to achieve reproducible performances.
我们在原子紧束缚框架内研究了应变硅纳米线(Si NWs)中的电子和空穴迁移率。我们表明,Si NWs 中的载流子迁移率对应变非常敏感,在 ± 2%的适度应变范围内,迁移率可以增强或降低超过 2 倍(高达 5 倍)。然而,应变对输运性质的影响非常依赖于纳米线的取向。发现拉伸的 100 Si NWs 是在 ≈10nm 直径 Si NWs 中传输电子和空穴的最佳折衷方案。我们的结果表明,应变工程可以用作 NW 技术的非常有效的助推器,并且必须注意 NW 器件中的工艺诱导应变,以实现可重复的性能。