Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
Brain Res. 2011 Jan 25;1370:1-15. doi: 10.1016/j.brainres.2010.10.111. Epub 2010 Nov 6.
In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5 min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an "inverted U curve" (Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5s of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40s.
针对食物奖励和其他相关事件,中脑多巴胺能神经元会发射短爆发动作电位,导致前额叶皮层(皮质多巴胺浓度的快速和短暂增加)中的多巴胺相位释放。在这里,我们应用 2 秒的谷氨酸、GABA、多巴胺和多巴胺激动剂的短(2 秒)离子电泳脉冲,局部作用于大鼠内侧前额叶皮层(PFC)脑片的第 5 层锥体神经元。与谷氨酸和 GABA 不同,短暂的多巴胺脉冲对静息膜电位几乎没有影响。然而,多巴胺以极其迅速(<1 秒)和短暂(<5 分钟)的方式改变动作电位的发射,因为每个神经元在应用后不到 5 分钟就恢复到基线。多巴胺对单个神经元的生理反应有显著差异。具有优势 D1 样受体信号的锥体神经元对多巴胺的反应是动作电位发射率严重降低,而主要由 D2 信号通路支配的锥体神经元对多巴胺的反应是尖峰产生的瞬时增加。细胞体周围多巴胺浓度的增加导致剂量依赖性反应,类似于“倒 U 形曲线”(Vijayraghavan S、Wang M、Birnbaum SG、Williams GV、Arnsten AF(2007)前额叶神经元中多巴胺 D1 受体的倒 U 形作用参与工作记忆。自然神经科学 10:376-384),但这种效应很容易被离子电泳电流假象引起。我们目前的数据表明,从中脑多巴胺能神经元接收直接突触接触的 PFC 锥体神经元的一个群体将在相位多巴胺爆发的 0.5 秒内停止。另一方面,溢出的多巴胺将作为所有携带 D2 受体的锥体细胞皮质兴奋性的正刺激物(增加 30%),持续 40 秒。