Suppr超能文献

琥珀酸维生素 E 靶向线粒体通过线粒体复合物 II 增强其促凋亡和抗癌活性。

Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II.

机构信息

School of Medical Science, Griffith University, Southport 4222, Queensland, Australia.

出版信息

J Biol Chem. 2011 Feb 4;286(5):3717-28. doi: 10.1074/jbc.M110.186643. Epub 2010 Nov 8.

Abstract

Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 μM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.

摘要

线粒体复合物 II(CII)最近被确定为一种新型抗癌药物靶点。线粒体靶向维生素 E 琥珀酸酯(MitoVES)经过修饰,使其优先定位于线粒体,极大地增强了其促凋亡和抗癌活性。使用基因改造细胞,MitoVES 导致 CII 功能正常的恶性细胞发生凋亡和活性氧(ROS)的产生,但对其 CII 功能失调的对应物没有影响。MitoVES 以 80 μM 的 IC50 抑制 CII 的琥珀酸脱氢酶(SDH)活性,而从 CII 到 CIII 的电子转移则以 1.5 μM 的 IC50 受到抑制。该药物对 CI 的酶活性或从 CI 到 CIII 的电子转移没有影响。超过 24 小时,MitoVES 导致与 GFP 融合的 HIF1α 的氧依赖性破坏结构域的稳定,表明促进了伪缺氧状态。分子建模预测,琥珀酰基锚定于近端 CII 泛醌(UbQ)结合位点,并且与 MitoVES 对凋亡诱导、ROS 生成和 SDH 活性的影响降低相关的顺式较短叶绿醇链同系物的相互作用能量依次降低。CII SDHC 亚基(S68A 或 S68L)近端 UbQ 结合位点 Ser(68)的突变抑制了 MitoVES 诱导的 ROS 生成和凋亡。体内研究表明,MitoVES 也通过在肿瘤抑制的背景下引起伪缺氧来发挥作用。我们提出,用 11 个碳链进行线粒体靶向的 VES 将该药物定位于线粒体内膜和基质界面的理想位置,从而优化其作为抗癌药物的生物学效应。

相似文献

1
Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II.
J Biol Chem. 2011 Feb 4;286(5):3717-28. doi: 10.1074/jbc.M110.186643. Epub 2010 Nov 8.
4
5
Mitochondrial targeting of α-tocopheryl succinate enhances its anti-mesothelioma efficacy.
Redox Rep. 2014 Jan;19(1):16-25. doi: 10.1179/1351000213Y.0000000064. Epub 2013 Nov 12.
7
Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue.
Biochim Biophys Acta. 2012 Sep;1817(9):1597-607. doi: 10.1016/j.bbabio.2012.05.005. Epub 2012 May 22.
8
Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy.
Free Radic Biol Med. 2011 Jun 1;50(11):1546-55. doi: 10.1016/j.freeradbiomed.2011.02.032. Epub 2011 Mar 12.
9
Affinity of vitamin E analogues for the ubiquinone complex II site correlates with their toxicity to cancer cells.
Mol Nutr Food Res. 2011 Oct;55(10):1543-51. doi: 10.1002/mnfr.201100066. Epub 2011 Jun 8.
10
Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II.
Clin Cancer Res. 2009 Mar 1;15(5):1593-600. doi: 10.1158/1078-0432.CCR-08-2439. Epub 2009 Feb 17.

引用本文的文献

2
Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy.
Int J Mol Sci. 2025 Feb 6;26(3):1376. doi: 10.3390/ijms26031376.
6
The Interplay between Autophagy and Mitochondria in Cancer.
Int J Mol Sci. 2024 Aug 23;25(17):9143. doi: 10.3390/ijms25179143.
7
The bioenergetic landscape of cancer.
Mol Metab. 2024 Aug;86:101966. doi: 10.1016/j.molmet.2024.101966. Epub 2024 Jun 12.
8
The Role of HSP90 and TRAP1 Targets on Treatment in Hepatocellular Carcinoma.
Mol Biotechnol. 2025 Apr;67(4):1367-1381. doi: 10.1007/s12033-024-01151-4. Epub 2024 Apr 29.
9
Targeting Mitochondria for Cancer Treatment.
Pharmaceutics. 2024 Mar 23;16(4):444. doi: 10.3390/pharmaceutics16040444.
10
Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer.
Front Cell Dev Biol. 2023 Sep 22;11:1266973. doi: 10.3389/fcell.2023.1266973. eCollection 2023.

本文引用的文献

1
Cancer statistics, 2010.
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
2
Mitochondrially targeted anti-cancer agents.
Mitochondrion. 2010 Nov;10(6):670-81. doi: 10.1016/j.mito.2010.06.004. Epub 2010 Jul 1.
3
Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss.
J Biol Chem. 2010 Aug 20;285(34):26494-505. doi: 10.1074/jbc.M110.143164. Epub 2010 Jun 21.
4
Targeting mitochondria for cancer therapy.
Nat Rev Drug Discov. 2010 Jun;9(6):447-64. doi: 10.1038/nrd3137. Epub 2010 May 14.
6
Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.
Free Radic Biol Med. 2010 Jan 1;48(1):161-72. doi: 10.1016/j.freeradbiomed.2009.10.039. Epub 2009 Oct 23.
7
Impact of mitochondriotropic quercetin derivatives on mitochondria.
Biochim Biophys Acta. 2010 Feb;1797(2):189-96. doi: 10.1016/j.bbabio.2009.10.001. Epub 2009 Oct 14.
8
Mitochondrial gateways to cancer.
Mol Aspects Med. 2010 Feb;31(1):1-20. doi: 10.1016/j.mam.2009.08.002. Epub 2009 Aug 19.
9
Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
Nat Rev Drug Discov. 2009 Jul;8(7):579-91. doi: 10.1038/nrd2803. Epub 2009 May 29.
10
Mutations in the heme b-binding residue of SDHC inhibit assembly of respiratory chain complex II in mammalian cells.
Mitochondrion. 2009 Jul;9(4):254-60. doi: 10.1016/j.mito.2009.03.004. Epub 2009 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验