Suppr超能文献

针对表观遗传系统的冲突及其通过细胞死亡解决:甲基特异性和其他限制系统的新概念。

Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems.

机构信息

Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.

出版信息

DNA Res. 2010 Dec;17(6):325-42. doi: 10.1093/dnares/dsq027. Epub 2010 Nov 8.

Abstract

Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction-modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.

摘要

DNA 甲基化是真核生物和原核生物中基因组 DNA 表观遗传修饰的重要方式,它有助于定义表观基因组和转录组。在原核生物中,DNA 甲基转移酶基因通常存在多样性、可移动性,并且与限制酶基因成对出现。某些表观遗传甲基化的减少可能导致与伴侣限制酶切割染色体,最终导致细胞死亡。因此,DNA 甲基转移酶和限制酶的配对迫使基因组内维持特定的表观遗传状态。尽管限制酶最初因其攻击入侵 DNA 的能力而被发现,但可以理解的是,因为这些 DNA 显示出与这种表观遗传状态的偏离。与限制酶相连或不相连的 DNA 甲基转移酶也可以成为 DNA 酶(如大肠杆菌的 McrBC)的靶标,McrBC 是由于其甲基特异性限制而被发现的。McrBC 通过染色体切割杀死宿主细菌细胞来响应特定的基因组甲基化系统。对 McrBC 同源物的进化和基因组分析表明,它们与限制修饰系统相似,在原核生物中具有可移动性和广泛分布。这些发现支持了这样一种假说,即这种甲基特异性 DNA 酶家族是作为与特定基因组甲基化系统竞争的移动元件进化而来的,通过宿主杀伤。这些限制系统清楚地表明了表观遗传系统之间存在冲突。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5655/2993543/9c10273d9d2b/dsq02701.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验