Fu H, Burris R H, Roberts G P
Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706.
Proc Natl Acad Sci U S A. 1990 Mar;87(5):1720-4. doi: 10.1073/pnas.87.5.1720.
The primary product of biological nitrogen fixation, ammonia, reversibly regulates nitrogenase activity in a variety of diazotrophs by a process called "NH4(+)-switch-off/on." Strong correlative evidence from work in Azospirillum lipoferum and Rhodospirillum rubrum indicates that this regulation involves both the inactivation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase and the reactivation by dinitrogenase reductase activating glycohydrolase. The genes encoding these two enzymes, draT and draG, have been cloned from these two organisms, so that direct genetic evidence can be marshaled to test this model in vivo. The draT/G system has been transferred to and monitored in the enteric nitrogen-fixing bacterium Klebsiella pneumoniae, an organism normally devoid of such a regulatory mechanism. The expressed draT and draG genes allowed K. pneumoniae to respond to NH4Cl with a reversible regulation of nitrogenase activity that was correlated with the reversible ADP-ribosylation of dinitrogenase reductase in vivo. Thus, the expression of draT and draG genes in K. pneumoniae is necessary and sufficient to support NH4(+)-switch-off/on, and ADP-ribosylation serves as a reversible regulatory mechanism for controlling nitrogenase activity in prokaryotes.
生物固氮的主要产物氨,通过一种名为“NH4(+)-开关关闭/开启”的过程,对多种固氮菌中的固氮酶活性进行可逆调节。来自脂环固氮螺菌和深红红螺菌研究工作的有力相关证据表明,这种调节涉及二氮还原酶ADP-核糖基转移酶使二氮还原酶失活以及二氮还原酶激活糖水解酶使其重新激活。编码这两种酶的基因draT和draG已从这两种生物体中克隆出来,这样就可以收集直接的遗传证据在体内测试该模型。draT/G系统已被转移到肠道固氮细菌肺炎克雷伯菌中并进行监测,肺炎克雷伯菌通常没有这种调节机制。所表达的draT和draG基因使肺炎克雷伯菌能够对氯化铵做出反应,对固氮酶活性进行可逆调节,这与体内二氮还原酶的可逆ADP-核糖基化相关。因此,draT和draG基因在肺炎克雷伯菌中的表达对于支持NH4(+)-开关关闭/开启是必要且充分的,并且ADP-核糖基化作为一种可逆调节机制,用于控制原核生物中的固氮酶活性。