Denisova Galina F, Denisov Dimitri A, Bramson Jonathan L
Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5.
Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S6. doi: 10.1186/1745-7580-6-S2-S6.
To properly characterize protective polyclonal antibody responses, it is necessary to examine epitope specificity. Most antibody epitopes are conformational in nature and, thus, cannot be identified using synthetic linear peptides. Cyclic peptides can function as mimetics of conformational epitopes (termed mimotopes), thereby providing targets, which can be selected by immunoaffinity purification. However, the management of large collections of random cyclic peptides is cumbersome. Filamentous bacteriophage provides a useful scaffold for the expression of random peptides (termed phage display) facilitating both the production and manipulation of complex peptide libraries. Immunoaffinity selection of phage displaying random cyclic peptides is an effective strategy for isolating mimotopes with specificity for a given antiserum. Further epitope prediction based on mimotope sequence is not trivial since mimotopes generally display only small homologies with the target protein. Large numbers of unique mimotopes are required to provide sufficient sequence coverage to elucidate the target epitope. We have developed a method based on pattern recognition theory to deal with the complexity of large collections of conformational mimotopes. The analysis consists of two phases: 1) The learning phase where a large collection of epitope-specific mimotopes is analyzed to identify epitope specific "signs" and 2) The identification phase where immunoaffinity-selected mimotopes are interrogated for the presence of the epitope specific "signs" and assigned to specific epitopes. We are currently using computational methods to define epitope "signs" without the need for prior knowledge of specific mimotopes. This technology provides an important tool for characterizing the breadth of antibody specificities within polyclonal antisera.
为了恰当地描述保护性多克隆抗体反应,有必要检测表位特异性。大多数抗体表位本质上是构象性的,因此不能使用合成线性肽来鉴定。环肽可以作为构象表位(称为模拟表位)的模拟物,从而提供可通过免疫亲和纯化进行选择的靶标。然而,管理大量随机环肽文库很麻烦。丝状噬菌体为随机肽的表达(称为噬菌体展示)提供了一个有用的支架,便于复杂肽文库的产生和操作。对展示随机环肽的噬菌体进行免疫亲和选择是分离对给定抗血清具有特异性的模拟表位的有效策略。基于模拟表位序列的进一步表位预测并非易事,因为模拟表位通常与靶蛋白仅显示出小的同源性。需要大量独特的模拟表位来提供足够的序列覆盖以阐明靶表位。我们已经开发了一种基于模式识别理论的方法来处理大量构象模拟表位文库的复杂性。分析包括两个阶段:1)学习阶段,分析大量表位特异性模拟表位以识别表位特异性“特征”;2)鉴定阶段,检测免疫亲和选择的模拟表位是否存在表位特异性“特征”并将其指定到特定表位。我们目前正在使用计算方法来定义表位“特征”,而无需事先了解特定的模拟表位。这项技术为描述多克隆抗血清中抗体特异性的广度提供了一个重要工具。