Suppr超能文献

大鼠肾髓质尿液浓缩机制的数学模型。一、公式推导和基础案例结果。

A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.

机构信息

Department of Mathematics, Duke University, Durham, NC 2770-0320, USA.

出版信息

Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71. doi: 10.1152/ajprenal.00203.2010. Epub 2010 Nov 10.

Abstract

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a collecting duct cluster in the inner medulla (IM). Particularly noteworthy features of this model include highly urea-permeable and water-impermeable segments of the long descending limbs and highly urea-permeable ascending thin limbs. Indeed, this is the first detailed mathematical model of the rat urine concentrating mechanism that represents high long-loop urea permeabilities and that produces a substantial axial osmolality gradient in the IM. That axial osmolality gradient is attributable to the increasing urea concentration gradient. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict that the interstitial NaCl and urea concentrations in adjoining regions differ substantially in the OM but not in the IM. In the OM, active NaCl transport from thick ascending limbs, at rates inferred from the physiological literature, resulted in a concentrating effect such that the intratubular fluid osmolality of the collecting duct increases ~2.5 times along the OM. As a result of the separation of urea from NaCl and the subsequent mixing of that urea and NaCl in the interstitium and vasculature of the IM, collecting duct fluid osmolality further increases by a factor of ~1.55 along the IM.

摘要

采用一种新的、基于区域的大鼠肾髓质尿液浓缩机制数学模型,研究解剖学研究揭示的转运和结构特性的意义。该模型通过代表位于外髓质(OM)血管束和内髓质(IM)集合管簇中心的同心区域,模拟了小管和血管之间的优先相互作用。该模型的特别值得注意的特征包括长降支中高度尿素可渗透且不透水的部分和高度尿素可渗透的升支薄段。事实上,这是第一个代表大鼠尿液浓缩机制的详细数学模型,该模型表示高长环尿素通透性,并在内髓质中产生显著的轴向渗透压梯度。该轴向渗透压梯度归因于尿素浓度梯度的增加。基于溶质和水的守恒以及跨壁转运的标准表达式,对模型方程进行了稳态求解。模型模拟预测,在 OM 中,毗邻区域的间质 NaCl 和尿素浓度有很大差异,但在 IM 中没有差异。在 OM 中,根据生理学文献推断的速率,从厚升支进行的主动 NaCl 转运导致浓缩效应,使得集合管内管腔流体渗透压沿 OM 增加约 2.5 倍。由于尿素与 NaCl 的分离以及随后在 IM 的间质和脉管中混合,集合管流体渗透压在 IM 中进一步增加了约 1.55 倍。

相似文献

1
A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71. doi: 10.1152/ajprenal.00203.2010. Epub 2010 Nov 10.
2
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.
3
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
4
Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.
Am J Physiol Renal Physiol. 2012 Mar 1;302(5):F591-605. doi: 10.1152/ajprenal.00263.2011. Epub 2011 Nov 16.
5
Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
Bull Math Biol. 2010 Feb;72(2):314-39. doi: 10.1007/s11538-009-9448-0.
6
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1367-81. doi: 10.1152/ajprenal.00347.2003. Epub 2005 May 24.
7
Two modes for concentrating urine in rat inner medulla.
Am J Physiol Renal Physiol. 2004 Oct;287(4):F816-39. doi: 10.1152/ajprenal.00398.2003. Epub 2004 Jun 22.
8
Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F1047-56. doi: 10.1152/ajprenal.00620.2010. Epub 2011 Jul 13.
9
Functional implications of the three-dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F973-87. doi: 10.1152/ajprenal.00249.2009. Epub 2010 Jan 6.
10
Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.
Clin J Am Soc Nephrol. 2014 Oct 7;9(10):1781-9. doi: 10.2215/CJN.08750812. Epub 2013 Aug 1.

引用本文的文献

2
Effects of the environment on the evolution of the vertebrate urinary tract.
Nat Rev Urol. 2023 Dec;20(12):719-738. doi: 10.1038/s41585-023-00794-3. Epub 2023 Jul 13.
3
Calcium Dynamics and Water Transport in Salivary Acinar Cells.
Bull Math Biol. 2021 Feb 17;83(4):31. doi: 10.1007/s11538-020-00841-9.
4
Parameterization of Microsomal and Cytosolic Scaling Factors: Methodological and Biological Considerations for Scalar Derivation and Validation.
Eur J Drug Metab Pharmacokinet. 2021 Mar;46(2):173-183. doi: 10.1007/s13318-020-00666-w. Epub 2020 Dec 19.
5
Cardiac and renal function interactions in heart failure with reduced ejection fraction: A mathematical modeling analysis.
PLoS Comput Biol. 2020 Aug 17;16(8):e1008074. doi: 10.1371/journal.pcbi.1008074. eCollection 2020 Aug.
6
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
7
A mathematical model of the rat kidney. II. Antidiuresis.
Am J Physiol Renal Physiol. 2020 Apr 1;318(4):F936-F955. doi: 10.1152/ajprenal.00046.2020. Epub 2020 Feb 24.
8
Solute and water transport along an inner medullary collecting duct undergoing peristaltic contractions.
Am J Physiol Renal Physiol. 2019 Sep 1;317(3):F735-F742. doi: 10.1152/ajprenal.00265.2019. Epub 2019 Jul 17.
9
A computational model of epithelial solute and water transport along a human nephron.
PLoS Comput Biol. 2019 Feb 25;15(2):e1006108. doi: 10.1371/journal.pcbi.1006108. eCollection 2019 Feb.
10
Nanomolar-Potency 1,2,4-Triazoloquinoxaline Inhibitors of the Kidney Urea Transporter UT-A1.
J Med Chem. 2018 Apr 12;61(7):3209-3217. doi: 10.1021/acs.jmedchem.8b00343. Epub 2018 Apr 3.

本文引用的文献

1
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
2
Functional implications of the three-dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F973-87. doi: 10.1152/ajprenal.00249.2009. Epub 2010 Jan 6.
3
Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment.
Am J Physiol Renal Physiol. 2010 Mar;298(3):F601-8. doi: 10.1152/ajprenal.00424.2009. Epub 2009 Dec 23.
4
The mammalian urine concentrating mechanism: hypotheses and uncertainties.
Physiology (Bethesda). 2009 Aug;24:250-6. doi: 10.1152/physiol.00013.2009.
5
A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F517-36. doi: 10.1152/ajprenal.90496.2008. Epub 2009 Apr 29.
6
Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1271-85. doi: 10.1152/ajprenal.90252.2008. Epub 2008 May 21.
7
Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
Am J Physiol Renal Physiol. 2007 Sep;293(3):F696-704. doi: 10.1152/ajprenal.00231.2007. Epub 2007 Jul 3.
8
Three-dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1355-66. doi: 10.1152/ajprenal.00481.2005. Epub 2005 Dec 27.
9
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.
10
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1367-81. doi: 10.1152/ajprenal.00347.2003. Epub 2005 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验