Department of Mathematics, Duke University, Durham, NC 2770-0320, USA.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71. doi: 10.1152/ajprenal.00203.2010. Epub 2010 Nov 10.
A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a collecting duct cluster in the inner medulla (IM). Particularly noteworthy features of this model include highly urea-permeable and water-impermeable segments of the long descending limbs and highly urea-permeable ascending thin limbs. Indeed, this is the first detailed mathematical model of the rat urine concentrating mechanism that represents high long-loop urea permeabilities and that produces a substantial axial osmolality gradient in the IM. That axial osmolality gradient is attributable to the increasing urea concentration gradient. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict that the interstitial NaCl and urea concentrations in adjoining regions differ substantially in the OM but not in the IM. In the OM, active NaCl transport from thick ascending limbs, at rates inferred from the physiological literature, resulted in a concentrating effect such that the intratubular fluid osmolality of the collecting duct increases ~2.5 times along the OM. As a result of the separation of urea from NaCl and the subsequent mixing of that urea and NaCl in the interstitium and vasculature of the IM, collecting duct fluid osmolality further increases by a factor of ~1.55 along the IM.
采用一种新的、基于区域的大鼠肾髓质尿液浓缩机制数学模型,研究解剖学研究揭示的转运和结构特性的意义。该模型通过代表位于外髓质(OM)血管束和内髓质(IM)集合管簇中心的同心区域,模拟了小管和血管之间的优先相互作用。该模型的特别值得注意的特征包括长降支中高度尿素可渗透且不透水的部分和高度尿素可渗透的升支薄段。事实上,这是第一个代表大鼠尿液浓缩机制的详细数学模型,该模型表示高长环尿素通透性,并在内髓质中产生显著的轴向渗透压梯度。该轴向渗透压梯度归因于尿素浓度梯度的增加。基于溶质和水的守恒以及跨壁转运的标准表达式,对模型方程进行了稳态求解。模型模拟预测,在 OM 中,毗邻区域的间质 NaCl 和尿素浓度有很大差异,但在 IM 中没有差异。在 OM 中,根据生理学文献推断的速率,从厚升支进行的主动 NaCl 转运导致浓缩效应,使得集合管内管腔流体渗透压沿 OM 增加约 2.5 倍。由于尿素与 NaCl 的分离以及随后在 IM 的间质和脉管中混合,集合管流体渗透压在 IM 中进一步增加了约 1.55 倍。