Suppr超能文献

逆流倍增可能无法解释大鼠肾脏外髓质中的轴突渗透梯度。

Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.

机构信息

Dept. of Mathematics, Duke Univ., Box 90320, Durham, NC 27708-0320, USA.

出版信息

Am J Physiol Renal Physiol. 2011 Nov;301(5):F1047-56. doi: 10.1152/ajprenal.00620.2010. Epub 2011 Jul 13.

Abstract

It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient along the outer medulla. However, aspects of anatomic structure (e.g., the physical separation of the descending limbs of short loops of Henle from contiguous ascending limbs), recent physiologic experiments (e.g., those that suggest that the thin descending limbs of short loops of Henle have a low osmotic water permeability), and mathematical modeling studies (e.g., those that predict that water-permeable descending limbs of short loops are not required for the generation of an axial osmolality gradient) suggest that countercurrent multiplication may be an incomplete, or perhaps even erroneous, explanation. We propose an alternative explanation for the axial osmolality gradient: we regard the thick limbs as NaCl sources for the surrounding interstitium, and we hypothesize that the increasing axial osmolality gradient along the outer medulla is primarily sustained by an increasing ratio, as a function of increasing medullary depth, of NaCl absorption (from thick limbs) to water absorption (from thin descending limbs of long loops of Henle and, in antidiuresis, from collecting ducts). We further hypothesize that ascending vasa recta that are external to vascular bundles will carry, toward the cortex, an absorbate that at each medullary level is hyperosmotic relative to the adjacent interstitium.

摘要

人们普遍认为,哺乳动物外髓质皮质-髓质轴上的渗透浓度梯度是通过逆流倍增过程产生和维持的:从厚升支主动吸收 NaCl,并与 Henle 袢降支和升支的逆流构型相结合,在外髓质中产生轴向渗透浓度梯度。然而,解剖结构的某些方面(例如,短 Henle 袢降支与相邻升支的物理分离)、最近的生理实验(例如,表明短 Henle 袢降支具有低渗透水通透性)以及数学建模研究(例如,预测短 Henle 袢降支的可渗透水对于产生轴向渗透浓度梯度不是必需的)表明,逆流倍增可能是不完整的,甚至可能是错误的解释。我们提出了一种轴向渗透浓度梯度的替代解释:我们将厚支视为周围间质的 NaCl 来源,并且我们假设,随着外髓质深度的增加,轴向渗透浓度梯度的增加主要是由 NaCl 吸收(来自厚支)与水吸收(来自长 Henle 袢的薄降支,在抗利尿时来自收集管)的增加比率维持的。我们进一步假设,位于血管束外部的直小血管将携带吸收物向皮质,在每个髓质水平,与相邻间质相比,吸收物都是高渗的。

相似文献

5
Two modes for concentrating urine in rat inner medulla.大鼠髓质内层尿液浓缩的两种模式。
Am J Physiol Renal Physiol. 2004 Oct;287(4):F816-39. doi: 10.1152/ajprenal.00398.2003. Epub 2004 Jun 22.
7
Mathematical model of an avian urine concentrating mechanism.鸟类尿液浓缩机制的数学模型。
Am J Physiol Renal Physiol. 2000 Dec;279(6):F1139-60. doi: 10.1152/ajprenal.2000.279.6.F1139.
8
Interstitial water and solute recovery by inner medullary vasa recta.髓质内直小血管对间质水和溶质的重吸收
Am J Physiol Renal Physiol. 2000 Feb;278(2):F257-69. doi: 10.1152/ajprenal.2000.278.2.F257.

引用本文的文献

4
Modeling glucose metabolism and lactate production in the kidney.肾脏中葡萄糖代谢和乳酸生成的建模
Math Biosci. 2017 Jul;289:116-129. doi: 10.1016/j.mbs.2017.04.008. Epub 2017 May 8.
6
Thermodynamic considerations in renal separation processes.肾脏分离过程中的热力学考量
Theor Biol Med Model. 2017 Jan 26;14(1):2. doi: 10.1186/s12976-017-0048-7.

本文引用的文献

2
Three-dimensional reconstruction of the mouse nephron.小鼠肾单位的三维重建。
J Am Soc Nephrol. 2006 Jan;17(1):77-88. doi: 10.1681/ASN.2005080796. Epub 2005 Nov 30.
6
Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.亨氏袢髓质内层细段的三维功能重建
Am J Physiol Renal Physiol. 2004 Jan;286(1):F38-45. doi: 10.1152/ajprenal.00285.2003. Epub 2003 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验