Suppr超能文献

[小脑运动控制机制]

[Mechanisms of locomotor control in the cerebellum].

作者信息

Yanagihara Dai

机构信息

Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.

出版信息

Brain Nerve. 2010 Nov;62(11):1149-56.

Abstract

Animals as well as humans adapt their locomotor patterns to suit different situations. To perform smooth and stable locomotion, they coordinate not only parts of a limb but also different limbs. The cerebellum is important for sensorimotor control and plays a crucial role in intra- and inter-limb coordination. Cerebellar gait ataxia is characterized by postural deficiencies and decomposition of movements. During locomotion, the vermis and the intermediate region of the cerebellum receive information through the spinocerebellar pathways about the ongoing activities in the spinal stepping generator and the somatosensory receptors. The information is conveyed by mossy fiber afferents to Purkinje neurons via granule cells and their axons, i.e., parallel fibers. Purkinje neurons transform the mossy fiber input signals to output signals that in turn modulate activities in the brainstem descending tract neurons of the brainstem that are involved in locomotion. Further, Purkinje neurons receive enhanced climbing fiber signals during perturbed locomotion. These climbing fiber signals may induce synaptic plasticity at the parallel fiber-Purkinje neuron synapses. Long-term depression (LTD) occurs in parallel fiber-Purkinje neuron synapses and is regarded as the cellular basis for the learning mechanism of the cerebellar neuronal circuit. The activation of parallel fibers releases glutamate and nitric oxide, and the released glutamate activates the glutamate receptors in the Purkinje neurons. mGluR1, a subtype of the metabotropic glutamate receptors, is highly expressed in Purkinje neurons. In addition, delta 2 glutamate receptor is expressed in only Purkinje neurons throughout the brain. Genetically targeted mice for these glutamate receptors and/or pharmacological blocking studies have been promoted to determine the functional linkage between the molecules at the cellular level and the adaptability of locomotion at the behavioral level. This article highlights some recent advances in the understanding of the role played by the cerebellum in the adaptive control of locomotion.

摘要

动物和人类都会调整其运动模式以适应不同的情况。为了实现平稳稳定的运动,它们不仅要协调肢体的各个部分,还要协调不同的肢体。小脑对于感觉运动控制很重要,并且在肢体内部和肢体之间的协调中起着关键作用。小脑性步态共济失调的特征是姿势缺陷和运动分解。在运动过程中,小脑的蚓部和中间区域通过脊髓小脑通路接收有关脊髓步进发生器和体感受体中正在进行的活动的信息。该信息由苔藓纤维传入神经通过颗粒细胞及其轴突,即平行纤维,传递给浦肯野神经元。浦肯野神经元将苔藓纤维输入信号转换为输出信号,进而调节参与运动的脑干下行束神经元的活动。此外,在运动受到干扰时,浦肯野神经元会接收到增强的攀爬纤维信号。这些攀爬纤维信号可能会在平行纤维 - 浦肯野神经元突触处诱导突触可塑性。平行纤维 - 浦肯野神经元突触中会发生长时程抑制(LTD),并被视为小脑神经元回路学习机制的细胞基础。平行纤维的激活会释放谷氨酸和一氧化氮,释放的谷氨酸会激活浦肯野神经元中的谷氨酸受体。代谢型谷氨酸受体的一种亚型mGluR1在浦肯野神经元中高度表达。此外,δ2谷氨酸受体仅在全脑的浦肯野神经元中表达。针对这些谷氨酸受体的基因靶向小鼠和/或药理学阻断研究已得到推进,以确定细胞水平上分子之间的功能联系以及行为水平上运动的适应性。本文重点介绍了在理解小脑在运动适应性控制中所起作用方面的一些最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验