Suppr超能文献

小脑浦肯野细胞中的信号处理

Signal processing in cerebellar Purkinje cells.

作者信息

Ito M

出版信息

Physiol Bohemoslov. 1987;36(3):203-16.

PMID:2957709
Abstract

Mechanisms and functional implications of signal processing in cerebellar Purkinje cells have been the subject of recent extensive investigations. Complex patterns of their planar dendritic arbor are analysed with computer-aided reconstructions and also topological analyses. Local computation may occur in Purkinje cell dendrites, but its extent is not clear at present. Synaptic transmission and electrical and ionic activity of Purkinje cell membrane have been revealed in detail, and related biochemical processes are being uncovered. A special type of synaptic plasticity is present in Purkinje cell dendrites; long-term depression (LTD) occurs in parallel fiber-Purkinje cell transmission when the parallel fibers are activated with a climbing fiber innervating that Purkinje cell. Evidence indicates that synaptic plasticity in Purkinje cells is due to sustained desensitization of Purkinje dendritic receptors to glutamate, which is a putative neurotransmitter of parallel fibers, and that conjunctive activation of a climbing fiber and parallel fibers leads to desensitization through enhanced intradendritic calcium concentration. A microzone of the cerebellar cortex is connected to an extracerebellar neural system through the inhibitory projection of Purkinje cells to a cerebellar or vestibular nuclear cell group. Climbing fiber afferents convey signals representing control errors in the performance of a neural system, and evoke complex spikes in Purkinje cells of the microzone connected to the neural system. Complex spikes would modify the performance of the microzone by producing LTD in parallel fiber-Purkinje cell synapses, and consequently would improve the overall performance of the neural system. The primary function of the cerebellum thus appears to be endowing adaptability to numerous neural control systems in the brain and spinal cord through error-triggered reorganization of the cerebellar cortical circuitry.

摘要

小脑浦肯野细胞信号处理的机制及其功能意义一直是近期广泛研究的主题。利用计算机辅助重建和拓扑分析来分析其平面树突状分支的复杂模式。浦肯野细胞树突中可能发生局部计算,但目前其程度尚不清楚。浦肯野细胞膜的突触传递、电活动和离子活动已被详细揭示,相关的生化过程也正在被发现。浦肯野细胞树突中存在一种特殊类型的突触可塑性;当平行纤维被支配该浦肯野细胞的攀缘纤维激活时,平行纤维 - 浦肯野细胞传递中会出现长时程抑制(LTD)。有证据表明,浦肯野细胞中的突触可塑性是由于浦肯野树突受体对谷氨酸持续脱敏所致,谷氨酸是平行纤维的一种假定神经递质,并且攀缘纤维和平行纤维的联合激活通过增强树突内钙浓度导致脱敏。小脑皮质的一个微区通过浦肯野细胞对小脑或前庭核细胞群的抑制性投射与小脑外神经系统相连。攀缘纤维传入信号传递代表神经系统执行中控制误差的信号,并在与该神经系统相连的微区的浦肯野细胞中诱发复合动作电位。复合动作电位会通过在平行纤维 - 浦肯野细胞突触中产生LTD来改变微区的性能,从而改善神经系统的整体性能。因此,小脑的主要功能似乎是通过由误差触发的小脑皮质回路重组,赋予大脑和脊髓中众多神经控制系统适应性。

相似文献

引用本文的文献

1
Surgery for pediatric low-grade gliomas within the vermis.小脑内儿童低级别胶质瘤的手术治疗。
Childs Nerv Syst. 2024 Oct;40(10):3173-3178. doi: 10.1007/s00381-024-06545-y. Epub 2024 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验