Mahajan V N
Appl Opt. 1995 Dec 1;34(34):8057-9. doi: 10.1364/AO.34.008057.
In the first two Notes of this series,(l,2) we discussed Zernike circle and annular polynomials that represent optimally balanced classical aberrations of systems with uniform circular or annular pupils, respectively. Here we discuss Zernike-Gauss polynomials which are the corresponding polynomials for systems with Gaussian circular or annular pupils.(3-5) Such pupils, called apodized pupils, are used in optical imaging to reduce the secondary rings of the pointspread functions of uniform pupils.(6) Propagation of Gaussian laser beams also involves such pupils.
在本系列的前两篇笔记中,(1,2)我们讨论了分别表示具有均匀圆形或环形光瞳的系统的最佳平衡经典像差的泽尼克圆多项式和环形多项式。这里我们讨论泽尼克 - 高斯多项式,它们是具有高斯圆形或环形光瞳的系统的相应多项式。(3 - 5)这种光瞳,称为变迹光瞳,用于光学成像中以减少均匀光瞳的点扩散函数的次级环。(6)高斯激光束的传播也涉及这种光瞳。