Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
Metallomics. 2010 Feb;2(2):154-61. doi: 10.1039/b916073f. Epub 2009 Oct 20.
Particle beam/hollow cathode-optical emission spectroscopy (PB/HC-OES) is presented as a tool for the determination of metal ion loading in transferrin (Tf). The elemental specificity of optical emission spectroscopy provides a means of assessing metal ion concentrations as well as the relative amounts of metal per unit protein concentration (up to 2 moles of Fe per mole of protein). The PB/HC-OES method allows for the simultaneous detection of metal content (Fe (I) 371.99, Ni (I) 341.41 nm, Zn (I) 213.86 nm, and Ag (I) 338.28 nm in this case), as well as elemental carbon and sulfur (C (I) 156.14 nm and S (I) 180.73 nm) that are reflective of the protein composition and concentration. Quantification for the metal species is based on calibration functions derived from aqueous solutions, with limits of detection for the entire suite being less than 1.0 μM. Determinations in this manner eliminate much of the ambiguity inherent in UV-VIS absorbance determinations of Tf metal binding. Validation of this method is obtained by analyzing loading response of Fe(3+) into Tf using the PB/HC-OES method and comparing the results with those of the standard UV-VIS absorbance method. Maximum Fe(3+) loading of Tf (based on the number of available binding sites) was determined to be 71.2 ± 4.7% by the PB/HC-OES method and 67.5 ± 2.5% for the UV-VIS absorbance method. Element emission ratios between the dopant metals and the carbon and sulfur protein constituents allow for concentration independent determinations of metal binding into Tf. Loading percentages were determined for Ni(2+), Zn(2+), and Ag(+) into Tf with maximum loading values of 19.5 ± 0.4%, 41.0 ± 4.4%, and 141.2 ± 4.3%, respectively. While of no apparent biological significance, Ag(+) presents an interesting case as a surrogate for Pt(2+), whose binding with Tf has shown to be quite different from the other metals. A different mode from the others is indeed observed, and is consistent with conjecture on the Pt(2+) mechanisms. Competitive binding studies not easily performed using absorbance spectroscopy are easily performed by simultaneous, multielement analysis, reflective of the metals and the protein content. In this work, there is clear competition between and Fe(3+) and Zn(2+) for binding in the C-terminus lobe of Tf, while Ni(2+) binds within the N-terminus lobe. Addition of Ag(+) to this mixture does not affect the other metals' distributions, but reflects binding at other protein sites.
粒子束/空心阴极-光发射光谱(PB/HC-OES)被提出作为测定转铁蛋白(Tf)中金属离子负载的工具。光发射光谱的元素特异性提供了一种评估金属离子浓度以及单位蛋白浓度下金属相对量的方法(高达 2 摩尔铁/摩尔蛋白)。PB/HC-OES 方法允许同时检测金属含量(Fe(I)371.99、Ni(I)341.41nm、Zn(I)213.86nm 和 Ag(I)338.28nm 在此情况下)以及反映蛋白质组成和浓度的元素碳和硫(C(I)156.14nm 和 S(I)180.73nm)。金属物种的定量基于源自水溶液的校准函数,整个套件的检测限小于 1.0 μM。通过使用 PB/HC-OES 方法分析 Fe(3+)进入 Tf 的负载响应并将结果与标准 UV-VIS 吸收法进行比较,从而消除了 Tf 金属结合的 UV-VIS 吸收测定固有的许多歧义。通过 PB/HC-OES 方法确定 Tf 的最大 Fe(3+)负载(基于可用结合位点的数量)为 71.2±4.7%,而 UV-VIS 吸收法为 67.5±2.5%。掺杂金属与碳和硫蛋白质成分之间的元素发射比允许对 Tf 中的金属结合进行浓度独立的测定。用 Tf 测定 Ni(2+)、Zn(2+)和 Ag(+)的负载百分比,最大负载值分别为 19.5±0.4%、41.0±4.4%和 141.2±4.3%。虽然没有明显的生物学意义,但 Ag(+)作为 Pt(2+)的替代物提出了一个有趣的案例,其与 Tf 的结合与其他金属明显不同。观察到一种与其他不同的模式,与关于 Pt(2+)机制的推测一致。通过同时进行多元素分析很容易进行吸收光谱不易进行的竞争结合研究,反映了金属和蛋白质含量。在这项工作中,Fe(3+)和 Zn(2+)之间存在明显的竞争,用于 Tf 的 C-末端叶结合,而 Ni(2+)结合于 N-末端叶。向该混合物中添加 Ag(+)不会影响其他金属的分布,但反映了在其他蛋白质部位的结合。