Scottish Crop Research Institute, Dundee, UK.
BMC Genomics. 2010 Nov 11;11:629. doi: 10.1186/1471-2164-11-629.
The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown.
An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei.
Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions.
大麦-条锈菌(大麦叶锈病)体系是研究作物部分抗病性的模式系统,对表型抗性的遗传图谱分析已经确定了几个部分抗性的数量性状位点(QTL)。已经开发了具有两个 QTL(Rphq2 和 Rphq3)的反向 QTL 特异性近等基因系(QTL-NIL),这两个 QTL 是从超敏感系 L94 和部分抗性系 Vada 杂交衍生的重组自交系(RIL)群体中检测到的最大效应。这些 QTL-NIL 中部分抗性的分子机制尚不清楚。
使用 Agilent 定制的微阵列,该微阵列由来自大麦共识 EST 序列的 15000 个探针组成,用于研究接种条锈菌 18 小时后全基因组和 QTL 特异性基因表达差异。总共鉴定出 1410 个基因在全基因组中差异表达,其中 55 个基因是由 QTL-NIL 在 Rphq2 和 Rphq3 上的遗传差异决定的。这些基因主要位于 QTL 区域,因此是位置候选基因。一个基因,编码转录抑制因子乙烯响应元件结合因子 4(HvERF4),位于 1H 染色体上 71cM 处 QTL 之外,位于先前检测到的防御反应的 eQTL 热点内。结果表明,Rphq2 或 Rphq3 包含一个跨 QTL,调节 HvERF4 的表达。我们推测 HvERF4 作为一种中间物质,将 Rphq2 或 Rphq3 内的一个(或多个)基因的反应信号传递给一系列下游防御反应基因。我们的结果还表明,具有极端或中间部分抗性表型的大麦品系在 Ph 反应基因的谱上表现出高度相似性,并且激素相关信号通路积极参与对条锈菌的反应。
QTL-NIL 之间的差异基因表达鉴定了主要位于目标区域内的基因,为 QTL 提供了转录和位置候选基因。相对于 QTL 对差异表达基因进行遗传作图有可能发现从 QTL 区域内的基因启动的跨 eQTL 介导的调节继电器。